When Words Sweat: Identifying Signals for Loan Default in the Text of Loan Applications
Abstract
The authors present empirical evidence that borrowers, consciously or not, leave traces of their intentions, circumstances, and personality traits in the text they write when applying for a loan. This textual information has a substantial and significant ability to predict whether borrowers will pay back the loan over and beyond the financial and demographic variables commonly used in models predicting default. The authors use text-mining and machine-learning tools to automatically process and analyze the raw text in over 18,000 loan requests from Prosper.com, an online crowdfunding platform. The authors find that loan requests written by defaulting borrowers are more likely to include words related to their family, mentions of god, short-term focused words, the borrower’s financial and general hardship, and pleading lenders for help. The authors further observe that defaulting loan requests are often written in a manner consistent with the writing style of extroverts and liars.