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Abstract

Fund-of-funds (FoF) managers face the task of selecting a (relatively) small

number of hedge funds from a large universe of candidate funds. We analyse

whether such a selection can be successfully achieved by looking at the track

records of the available funds alone, using advanced statistical techniques. In par-

ticular, at a given point in time, we determine which funds significantly outperform

a given benchmark while, crucially, accounting for the fact that a large number

of funds are examined at the same time. This is achieved by employing so-called

multiple testing methods. Then, the equal-weighted or the global minimum vari-

ance portfolio of the outperforming funds is held for one year, after which the

selection process is repeated. When backtesting this strategy on two particular

hedge fund universes, we find that the resulting FoF portfolios have attractive re-

turn properties compared to the 1/N portfolio (that is, simply equal-weighting all

the available funds) but also when compared to two investable hedge fund indices.
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1 The Challenge

A fund-of-funds (FoF) manager or an institutional investor faces the challenge of select-

ing a (relatively) small number of ‘good’ hedge funds from a large universe of candidate

funds. We shall address the problem of fund selection from a statistical point of view.

The analysis will be based solely on the track records of the individual managers. Ar-

guably, the track record constitutes the single most important piece of information to

judge the quality of a fund manager. 1 But making sense of the track records is a

non-trivial task.

If we want to answer the question whether a particular fund manager is skilled

based on his track record, we can use a statistical test. Such a test declares a fund

manager skilled if his alpha with respect to a suitable benchmark is statistically proven

to be positive ‘beyond a reasonable doubt’, say a doubt threshold of 5%. This doubt

threshold, say 5%, is denoted by the significance level of the test. By design, there is

only a small chance then, say 5%, that a lucky manager passes the test, that is, gets

wrongly identified as skilled. 2 Importantly, this logic assumes that only one manager

is tested. If many managers are tested at the same time, the small individual doubts

accumulate to a large global doubt. In other words, it now becomes very likely that

some lucky managers will pass the test. This is undesirable for investment purposes. In

general, only skilled managers will continue to outperform, while lucky managers will

not.

The following analogy might help illustrate this dilemma. Imagine a person claims

to have — some, though not necessarily perfect — extrasensory perception (ESP). A

possible test consists of secretly tossing a coin ten times and having the person predict

the outcome of each toss. It would then be reasonable to identify the person as pos-

sessing ESP if she scores at least nine correct predictions. The logic is that somebody

guessing completely at random has a chance of about 1.1% to score at least nine correct

predictions. As a result, there is only a small chance that an ‘ignorant’ person passes

the test by chance. 3 But now consider 1,000 persons taking the test at the same time

(perhaps because we put out a related job ad) and assume they are all ignorant. One

would expect 0.011 ×1, 000 = 11 persons to pass the test by chance alone, that is, to get

lucky. And the probability that at least one person will pass the test by chance alone,

if they all guess independently of each other, is 1 − (1 − 0.011)1000 = 99.998%.

If our goal is to select the skilled managers from a large universe of candidates, we

face a similar challenge as Cinderella:
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“The good ones into the pot,

The bad ones into the crop.”

We want to identify the skilled managers (“The good ones into the pot”) but exclude

at the same time the lucky managers (“The bad ones into the crop”). But, unlike her, we

must face the imperfect nature of statistical tests. 4 As a result, näıve testing, without

taking the multiple evaluations into account, will allow lucky managers to creep in. This

pitfall is rephrased in Grinold and Kahn (2000) in the following words:

“The fundamental goal of performance analysis is to separate skill from luck.

But, how do you tell them apart? In a population of 1,000 investment man-

agers, about 5 percent, or 50, should have exceptional performance by chance

alone. None of the successful managers will admit to being lucky; all of the

unsuccessful managers will cite bad luck.”

2 The Solution

We now discuss the solution to the challenge. In doing so, we first need to introduce

some notation.

There are N funds in the universe and the (common) return history comprises T

observations. The alpha of a given fund manager with respect to his corresponding

benchmark is denoted by αn, for n = 1, . . . , N . The choice of the appropriate benchmark

is up to the FoF manager, not the statistician. For example, the benchmark could simply

be the riskfree rate. Or it could be a hedge fund index, comprised of funds that have a

similar investment style. More generally, multi-factor benchmarks as in Kosowski et al.

(2007) are also possible.
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We look at individual hypotheses of the form:

Hn : αn ≤ 0 vs. H ′
n : αn > 0 . (1)

So for each fund, the null hypothesis corresponds to a non-skilled manager (that is, his

alpha is negative or zero), while the alternative corresponds to a skilled manager (that

is, his alpha is positive). The two sets of non-skilled (or potentially lucky) managers

and skilled managers are denoted by I and I ′, respectively:

I = {n : αn ≤ 0} and I ′ = {n : αn > 0} .

The goal is to make individual decisions about each testing problem (1) while control-

ling the probability of lucky managers to pass the test by chance. A particular manager

n is declared skilled by our statistical method if Hn is rejected in favor of H ′
n. Depending

on the (unknown) state of nature, there are two possibilities if this happens. On the one

hand, if Hn is actually true, we make a mistake in the sense of declaring a non-skilled

manager as skilled. Or, in the lingo of the statistician, we make a false discovery. On the

other hand, if Hn is actually false, we correctly identified a skilled manager as skilled.

Or, in the lingo of the statistician, we made a true discovery.

2.1 Formal Description of the Solution

For the purpose of this paper, accounting for multiple testing means that we are con-

cerned about the possibility of even one lucky manager to pass the test or, in other

words, to make even a single false discovery. 5

Let F denote the number of false discoveries that our statistical method is going to

make. Then the familywise error rate (FWE) is defined as the probability of making

even one false discovery:

FWE ≡ P{F > 0} = P{Reject at least one Hn with n ∈ I} .

An appropriate statistical multiple testing method then ensures that this probability lies

below some small, prespecified level, say 5% or 10%. Usually this level is denoted by α

in the statistical literature but here we shall denote it by δ instead in order to avoid any

confusion with the α’s of the fund managers. Therefore, the goal is to ensure that:

FWE ≤ δ .

By limiting the probability that even one lucky manager passes the test, we can in turn

be confident that all managers identified by the statistical method are truly skilled.
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More specifically, assume δ = 10%. Then, after applying the method, we can be 1 − δ,

or 90%, confident that all identified managers are truly skilled. As a result, with a high

probability, our statistical FoF portfolio will only consist of skilled managers.

2.2 Implementation of the Solution

Implementing the solution in practice is anything but trivial. A host of statistical prob-

lems arise, among others:

• The non-normality of hedge fund returns.

• The time series nature of hedge fund returns.

• The choice of the individual performance measures: raw alpha estimate α̂ vs. t-

statistic. The t-statistic is obtained by dividing the raw alpha estimate by its

estimation uncertainty, which is quantified via a standard error.

• Accounting for the dependency across managers in order to improve the power of

the statistical method, that is, its ability to detect skilled managers.

For each fund we compute an estimate of αn, denoted by α̂n, and a corresponding

standard error σ̂n. 6 The ‘studentized’ test statistic for testing Hn vs. H ′
n is then given

by

tn =
α̂n

σ̂n

.

The funds are ranked according to their test statistics, that is, the fund with the largest

tn statistic is the top fund according to this ranking and so on.

Alternatively, it would be possible to rank the fund managers simply according to

their non-studentized test statistics α̂n, that is, according to the ‘raw’ alpha estimates.

While this is actually the more common approach in the mainstream finance media, we

consider it misguided. Ranking by the α̂n does not account for the (wildly) varying

risks taken on by the various fund managers. On the other hand, ranking by the tn

does, since a larger risk will be reflected by a larger standard error σ̂n. This in the very

same spirit as using the Sharpe ratio (that is, a risk-adjusted performance measure) to

judge the performance of a fund manager rather than the raw excess return (that is, a

not-risk-adjusted performance measure).

How to compute α̂n and the corresponding standard error σ̂n depends on the given

benchmark. A very general setup covering most practical applications are multi-factor

benchmarks as in Kosowski et al. (2007). In such cases, α̂n can be computed from a
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standard OLS time series regression, based on the observed fund return and factor data.

But care must be taken in computing the standard error σ̂n. It would be generally wrong

to simply use the standard error provided by the OLS output, since it does not properly

account for the time series nature of hedge fund returns (and potentially also some of the

factors). Instead one should use a HAC standard error 7 employing kernel estimation

techniques; for example, see Andrews (1991) and Andrews and Monahan (1992).

Once the test statistics tn have been obtained, it is the task of the multiple testing

method to compute a cutoff value, denoted by d, from the joint track records of all

managers in the investment universe and then declare those managers as skilled for

which tn > d. Crucially, this has to be done in a way such that the FWE is controlled.

Of course, controlling a multiple testing criterion is only one side of the coin. It could be

trivially achieved by never declaring any fund manager as skilled (that is, by choosing

c = ∞). Naturally, there is also the other side of the coin. At same time, we wish to

identify as many skilled managers as possible. So in the lingo of the statistician, we want

to employ a multiple testing method with as much power as possible. The current state

of the art is developed Romano and Wolf (2005) and can be summarized as follows.

It turns out that the ideal critical value d would be given by the 1 − δ quantile of

the following random variable:

max
1≤n≤N

(α̂n − αn)

σ̂n
. (2)

Importantly, the value of d is not only determined by the N marginal distributions of the

individual statistics (α̂n − αn)/σ̂n but also by their cross-dependence structure. Such a

procedure is not realistic, nevertheless, since the distribution of the random variable (2)

is not known in practice. However, a consistent estimator of d, denoted by d̂, can be

obtained by a bootstrap method. Namely, d̂ is obtained as the 1 − δ quantile of the

following random variable:

max
1≤n≤N

(α̂∗
n − α̂n)

σ̂∗
n

. (3)

To this end, artificial return data are generated by an appropriate time series bootstrap

mechanism. The estimator of αn and its corresponding standard error computed from

this artificial data set are denoted by α̂∗
n and σ̂∗

n, respectively. The algorithm to com-

pute σ̂∗
n generally depends on the particular bootstrap mechanism chosen. We refer the

interested reader to Romano and Wolf (2005) for the details. The bona fide decision rule

is then to declare all funds managers as skilled for which tn > d̂.
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The price one has to pay for replacing d by d̂ is that control of the FWE is replaced

by asymptotic control of the FWE:

lim sup
T→∞

FWE ≤ δ .

However, simulation studies show that for practically relevant sample sizes T , the finite-

sample control of the FWE is very satisfactory; see Romano and Wolf (2005) and Romano

et al. (2008).

Remark 2.1. A key innovation of Romano and Wolf (2005) is to develop a stepwise

method to detect as many skilled managers as possible. Instead of using a formal

algorithm, it can be quite easily described in English. Assume there are N = 100

managers under test simultaneously and that 10 of them are detected as skilled using

the procedure described above. We are left then with a smaller universe of 90 managers.

The ‘trick’ now is to use the same formal procedure on the remaining smaller universe,

which might lead to the detection of some further skilled managers.

The reason is as follows. The individual test statistics tn will stay the same, of course.

However, the critical value d̂ in this second step will generally be smaller, since now we

are looking at the maximum over 90 statistics, rather than over 100 statistics, and so

the resulting 1 − δ quantile will be at most as large but typically strictly smaller. So

some further rejections may result. In which case we continue to play the same game in

the third step and so on, until no further rejections result any more.

This more powerful stepwise method still provides asymptotic control of the FWE.

For the empirical analysis of this paper, we use the riskfree rate as the common

benchmark for all hedge funds. In this case, the corresponding alpha is simply the

expected excess return of the fund (over the riskfree rate). For a given fund, α̂n is

computed as the sample average excess return over the observed investment period.

The corresponding standard error σ̂n is a standard HAC standard error employing a

kernel estimation technique. In particular, we use the method of Andrews and Monahan

(1992), based on the QS (quadratic spectral) kernel.

2.3 Comparison to Related Approaches

Needless to say, we are not the first ones to suggest to carry out hedge fund selection

based on the managers’ track records. We lack the time and the space to discuss all

previously suggested approaches in detail and so limit ourselves to two selected compar-

isons.
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Our method will, with a high probability, only identify skilled managers. As described

above, the method works in the following way. Rank the fund managers by a certain

performance criterion computed from their respective track records. Then based on

the chosen input parameter δ, the method selects an a priori random number of the

top funds, which are then declared as skilled. In other words, the threshold a manager

must pass is actually computed from the joint track records themselves and is therefore

stochastic. Knowing the number of funds in the investment universe will not tell us how

many funds will end up in the FoF portfolio until we actually jointly examine all the

track records.

This is in contrast to some previous approaches that suggest to pick either an a priori

fixed percentage or or an a priori fixed number of the top funds for the FoF portfolio;

see Joehri and Leippold (2006) and Gregoriou et al. (2006), respectively. In discussing

such approaches, we will focus on the fixed-percentage strategies; the critique would be

similar for the fixed-number strategies.

The obvious question is how to pick the percentage ex ante? When backtesting the

strategy, for a given investment universe and a given investment period, there usually

will be a certain percentage leading ex post to a very good performance. But there is

no universally ‘optimal’ percentage. The results will vary with the investment universe

and/or the investment period. To put it in the context of non-skilled vs. skilled managers

and selecting two (overly) extreme scenarios just to make the point: if all managers are

non-skilled, the optimal percentage is zero; if all the managers are skilled, the optimal

percentage is 100. Knowing from previous published studies that a certain percentage

worked well for a certain investment universe during a certain investment period, is not

overly helpful to a FoF manager faced with a different universe and a different period.

In fact, such information might actually be quite misleading.

On the other hand, the use of our multiple testing methods gives the FoF manager

the confidence that for his specific investment universe and investment period, the se-

lected fund managers are all skilled. And such a selection should result in continued

attractive future performance for the corresponding FoF portfolio. Whether this indeed

is the case will be examined in the next section by means of some backtesting exercises.

Importantly, these exercises do not require any hindsight knowledge but instead yield

true ‘out-of-sample’ performances.
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3 Investment Universes and Portfolio Construction

We use the CISDM database from http://wrds.wharton.upenn.edu and a customized

Eurekahedge datafeed from http://www.eurekahedge.com to get monthly series of net-

of-fees hedge fund returns.

We apply an ‘observe ten years–invest one year’ strategy with a three-month sell lag,

moving at an annual frequency. More specifically, on October 1, of every year y, we feed

117 months of past return data into the multiple testing method. It then detects the

statistically significantly skilled fund managers. We then invest in the equal-weighted

portfolio of the detected hedge funds from January to December in year y + 1. Then

the procedure repeats, that is, on October 1 of year y + 1, we already need to decide

which hedge funds we want to invest in over the next year y + 2. Given the annually

moving ‘observe ten years–invest one year’ strategy, six investment periods from year

2000 to 2005 (for CISDM) and from year 2002 to 2007 (for Eurekahedge), respectively,

are obtained.

At any given investment point in time, we are only selecting from a certain sub-

universe of all funds contained in the respective database (CISDM or Eurekahedge).

First, we restrict attention to funds which both have a complete 117-month return history

and are open to investment at this point. Second, we exclude funds that (overall) lost

money over this 117-month period. 8 Third, we exclude all funds that have at least

one recorded monthly return exceeding 50% in absolute value. 9 Fourth, to avoid the

inclusion of funds which are ‘too similar’ to each other, we impose that all the pairwise

sample correlations over the 117-month period lie below 0.95, so some further funds

might have to be excluded. 10

In addition to the equal-weighted portfolio of the outperforming funds, we build a

global minimum variance portfolio (GMV) with the outperforming funds. Specifically,

given K outperforming funds over 117 months detected by our multiple testing method,

we solve the following optimization problem within each 117 months window

min
w

w′Σ̂w

s.t. w ≥ 0

w′1 = 1,

(4)

using quadratic programming methods. Since the true covariance matrix Σ is unknown,

we estimate it using a suitable shrinkage estimator from the joint track records of the

K funds over the last 117 months; see the Appendix for details. Optimization problem

(4) returns an optimal weight w∗ for each 117 month window. In the following year, one
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then invests in the w∗-weighted portfolio of the outperforming funds. The equal-weighted

portfolio is simply the w∗ = [1/K . . . 1/K] weighted portfolio of the outperforming funds.

The rebalancing and the three months sell-lag is as before.

As pointed out before, selecting an appropriate benchmark for a given hedge fund

is the task of the FoF manager, not of the statistician. Since we are ‘ignorant’ in this

respect, we simply chose the riskfree rate as the universal benchmark. Such a choice

certainly appears reasonable and may even be the natural one from certain view points.

In practice, the particular riskfree rate we use is from the CRSP Risk Free Rates file. 11

The multiple testing criterion we employ is the control of the FWE with parameter

δ = 10%. So at any given point in time, we can be 90% confident that all identified

managers are truly skilled.

It is then natural to ask whether there is any ‘value’ in our statistical technique

of constructing a FoF. An obvious competitor is the 1/N portfolio, that is, the equal-

weighted portfolio of all available hedge funds. Recent work by DeMiguel et al. (2009),

in the context of building equity portfolios, shows that this simple minded portfolio

is actually surprisingly difficult to outperform for statistical methods that construct

portfolios based on the past return data. However, in contrast to equity investing,

the 1/N portfolio is often not feasible for a FoF manager, given the various minimum

investments of the individual funds. Hence, it is of interest to see whether statistical

FoF portfolio, based on a much smaller investment universe, can do (at least) as well as

the 1/N portfolio. So for each investment universe, we also include the 1/N portfolio in

our study.

Remark 3.1. Having a smaller investment universe by applying a multiple testing

method rather than investing in all available funds is particularly important when port-

folio optimization, such as choosing the global minimum variance portfolio, is used. In

this case, the smallest weight (or investment portion) will often be much smaller than the

inverse of the number of funds to invest in. So the larger the number of funds, given the

various minimum investments, the less feasible such a ‘optimized’ strategy becomes.

Furthermore, we consider two investable hedge fund indices for comparison. The

HFRX Global Investable Hedge Fund Index is from www.hedgefundresearch.com and

the CS/Tremont Investable Hedge Fund Index from www.hedgeindex.com. Note that

the inclusion of these indices somewhat amounts to comparing apples to oranges, since

they correspond to investment universes different from both the CISDM and the Eureka-

hedge databases. Nevertheless it is interesting to see how our statistical FoF portfolios

fare against some ‘real life’ competitors.
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3.1 Idealistic Setup

In a first analysis, all hedge funds that have a complete return history of 192 months

are part of our chosen investment universes. This is idealistic, since we will never know

in January 2000, say, which funds will survive until December 2005 in order to restrict

our attention to them. Nevertheless, it is also of interest to compare our statistical FoF

portfolio to the 1/N portfolio in this context.

Remark 3.2. Constructing investment portfolios based on statistical multiple testing

methods, investing in assets which are established as outperforming, is certainly not

restricted to the hedge fund industry. More generally, this approach could also be

applied to equities, bonds, foreign exchange, etc. The frequency of individual assets

‘dying’ in such alternative markets will often be much reduced compared to the hedge

fund industry, or even (close to) zero. So including the results for a world without dying

individual funds/assets is not only of academic interest.

In a second step, we will make the investment setup more realistic with respect to

the characteristics of the hedge fund industry and not using any future knowledge about

fund survivorship.

Either way, we always impose a realistic sell lag of three months. That is, we have

to decide at October 1 in year y − 1 which funds to sell at January 1 of year y. For

simplicity, we synchronize the buy decisions with the sell decisions. So on October 1 of

year y − 1, the portfolio to be held throughout year y is chosen.

Our CISDM investment universe comprises 97 hedge funds, ranging from January

1990 to December 2005. The Eurekahedge investment universe contains 61 hedge funds

over the period January 1992 to December 2007. Restricting attention to the hedge

funds actually open to investment throughout the 16-year period further reduces the

sizes of the two universes to 91 and 54, respectively.

3.2 Realistic Setup

In the second part of our analysis, we evaluate a completely realistic strategy, both for

the FoF and the 1/N portfolios as follows. In October of a given year, we take as the

investment universe all funds that have a complete 117-month history. As before, we

impose a reasonable sell lag of three months and synchronize the sell decisions with the

buy decisions.

We then construct both our statistical FoF portfolios and the 1/N portfolio and hold

them for a year. During that year, some funds might ‘die’ of course. Not all funds will
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generally return all money to the investors. We, therefore, assume a uniform recovery

rate of 90% of the investments at the time a fund closes down. 12 The recovered money is

then invested in the riskfree rate for the remainder of year. Then we play the same game

again next October. So in this way, the size of the investment universe K actually varies

over time. Finally, we impose a disinvest-reinvest restriction, as many fund managers are

not willing to tolerate a come-and-go-as-you-please behavior of investors. If we disinvest

from fund n in October of any year, we are not allowed to reinvest in fund n in any of

the following years anymore. 13

The sizes of the CISDM investment universes only containing open funds are 86,

116, 160, 211, 268, 371 for the years 2000, 2001, . . ., 2005, respectively. The sizes of the

Eurekahedge investment universes with only open funds are 92, 118, 137, 138, 136, 119

for the years 2002, 2003, . . ., 2007, respectively.

3.3 Statistical Significance of Portfolio Outperformance

Of course, we must keep in mind that any performance measures computed from a finite

investment period are only sample-based estimates rather than true ‘population num-

bers’ (or parameters in the lingo of the statistician). So when comparing two portfolios

based on a given performance measure, we cannot necessarily conclude that the portfo-

lio with the higher sample-based estimate is indeed better. In other words, we cannot

claim any statistical significance based on the sample-based estimates only. To this end,

rather, we need to employ a proper statistical test.

Let us focus on the Sharpe ratio which, arguably, is the single most important per-

formance measure. We want to establish whether the true ‘underlying’ Sharpe ratio of

the statistical FoF portfolio is indeed larger than the one of the 1/N portfolio in the ide-

alized setup. Denote these two parameters by SRFoF and SR1/N , respectively. Further,

denote their difference by ∆, that is,

∆ = SRFoF − SR1/N .

Since we have an a priori belief that ∆ > 0 and would like to ‘verify’ this belief by a

statistical test, we consider a one-sided test of the kind:

H : ∆ ≤ 0 vs. H : ∆ > 0 .

For both investment universes, the sample-based estimates ∆̂ are indeed positive: for

the CISDM universe, we obtain ∆̂ = 0.37 − 0.32 = 0.05; for the Eurekahedge universe,

we obtain ∆̂ = 0.37 − 0.27 = 0.10, as reported in Table 3. But again, this does not

‘prove’ that the two population ∆’s are also positive.
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Testing for the difference between two population Sharpe ratios is a non-trival mat-

ter. The most commonly used method in the finance literature is the test of Memmel

(2003), which is a corrected version of the earlier test of Jobson and Korkie (1981).

Unfortunately, this test was derived using the overly strict assumptions of return data

that follow a normal distribution and are additionally independent over time. At least

one of these two assumptions is generally violated in practice. For hedge fund return

data, typically both assumptions are violated. As a result, the test of Memmel (2003)

tends to overstate the statistical evidence that is really contained in the observed data.

Therefore, since we want to demonstrate that our FoF portfolios outperform the 1/N

portfolios with respect to the Sharpe ratio, using the test of Memmel (2003) would

actually be tempting. However, it would not be correct.

Ledoit and Wolf (2008) propose a bootstrap test that instead yields reliable inference

in the presence of non-normal return distributions and time series effects. In other words,

it gives a fair appraisal of the statistical significance actually contained in the observed

data. Note that their bootstrap test is designed for two-sided hypotheses of the kind

H : ∆ = 0 vs. H ′ : ∆ 6= 0,

but it can be easily modified to apply to the one-sided case as well.

As stated, we believe that the Sharpe ratio is the single most important performance

measure. Looking at measures that are not adjusted for the risk taken out by the fund

manager, such as the average (excess) return can be quite misleading. Nevertheless, we

can apply a statistical test to the difference between average (excess) returns as well.

Again, we propose to use a bootstrap test that yields reliable inference in the presence

of non-normal return distributions and time series effects. Testing for means is easier

than testing for Sharpe ratios. Therefore, the test of Ledoit and Wolf (2008) can be

‘simplified’ in a straightforward manner to deal with means.

4 Results

The results are summarized in Tables 1 and 2 for the idealistic setup and in Tables 3

and 4 for the realistic setup, respectively. Importantly, all summary statistics are on a

monthly basis, that is, they are not annualized. 14 In addition, Figures 1 and 2 provide

some graphical representation of the various return distributions.
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4.1 Idealistic Setup

First, we report the number of hedge funds making up the statistical FoF portfolio in

each of the six annual investment periods. For the CISDM portfolio this number varies

between 3 and 9, compared to a universe size of 91. For the Eureka portfolio, this number

varies between 1 and 5, compared to a universe size of 54. The size of the HFRX index

varies over time, always being larger than 60. The size of the CS/Tremont index is 60.

Second, we report the mean of the annual excess log returns over the six annual

investment periods. We find that for both investment universes (and their slightly

different respective investment periods), the statistical FoF portfolios yield a lower excess

return than the 1/N portfolio. However, these differences are not statistically significant,

as reported in Table 2.

Third, we report the mean of the ‘raw’ log annual returns (that is, not in excess of

the riskfree rate). Not surprisingly, the comparisons are qualitatively very similar to the

ones for the excess returns.

Fourth, we report the Sharpe ratios of the monthly log excess returns. As already

stated, for both investment universes, our statistical FoF portfolios have a (somewhat)

smaller excess return and a (much) smaller portfolio size than the 1/N portfolio. Typi-

cally, one would expect smaller portfolios to have less favorable Sharpe ratios than larger

ones due to diversification effects. However, the opposite is the case for both investment

universes, with the differences being rather large at times. This is especially remarkable

in case of the Eurekahedge universe where the size of the statistical FoF portfolios ranges

from 1 to 5. Statistical significance at the 10% level is only achieved in one case, though:

namely for the EW-FoF portfolio with the CISDM data.

Fifth, we report the maximum drawdown over the out-of-sample investment period

of 6 · 12 = 72 months. Again, for both investment universes, the statistical FoF port-

folios outperform the 1/N portfolio, adding further evidence to the claim that multiple

testing technique successfully identifies a small number of skilled managers from the

large investment pool.

The boxplots in Figure 1 clearly show that the 1/N portfolio, despite its larger

universe size, yields returns that are much more variable compared to the two statistical

portfolios. In addition, portfolio optimization appears successful in the sense that the

returns of GMV-FoF are somewhat less variable compared to EW-FoF.

We finally note that the statistical portfolios generally compare favorably to the

investable indices as well.
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4.2 Realistic Setup

First, we report the number of hedge funds making up the statistical FoF portfolio in

each of the six annual investment periods. We observe that the sizes of the CISDM FoF

portfolios vary between 10 and 14. The Eureka FoF portfolios contain between 9 and 21

funds. The size of the HFRX index varies over time, always being larger than 60. The

size of the CS/Tremont index is 60.

Second, we report the mean of the monthly excess log returns over the six annual

investment periods. We see again that the mean excess monthly returns are lower than

their 1/N counterparts. However, these differences are not statistically significant; see

Table 4.

Third, we report the mean of the ‘raw’ log monthly returns (that is, not in excess

of the riskfree rate). Not surprisingly, the comparisons are qualitatively very similar to

the ones for the excess returns.

Fourth, we report the Sharpe ratios of the monthly log excess returns. As before,

the statistical portfolios yield consistently higher Sharpe rations compared to the 1/N

portfolio, though not at a level of statistical significance.

Fifth, we report the maximum drawdown over the out-of-sample investment period of

6 · 12 = 72 months. Again, for both investment universes, the statistical FoF portfolios

outperform the 1/N portfolio, with the differences being rather large. In fact, for both

universes, the 1/N portfolio has the worst drawdown of all five portfolios.

The boxplots in Figure 2 clearly show that the 1/N portfolio, despite its larger

universe size, yields returns that are much more variable compared to the two statistical

portfolios. In addition, portfolio optimization appears successful in the sense that the

returns of GMV-FoF are somewhat less variable compared to EW-FoF.

We finally note that the statistical portfolios generally compare favorably to the

investable indices as well.

Remark 4.1. We generally fail to find statistical significance when testing for outperfor-

mance. This may not be surprising, given that it is notoriously difficult to find statistical

significance in small samples of noisy financial returns (our out-of-sample period only

comprises 72 months). There is, nevertheless, a clear and strong pattern. For each

performance criterion (average excess return, Sharpe ratio, or maximum drawdown),

there is a total of eight comparison cases (two setups, two data sets, and two statistical

portfolios). In all eight cases, the story is always the same: the statistical portfolio

yields a lower average excess return but outperforms the 1/N portfolio both in terms

of the Sharpe ratio and the maximum drawdown. The latter two criteria are probably
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more relevant, as most FoF managers promote their ability to manage the risk in their

portfolios.

We can also ask the question whether portfolio optimization via the GMV portfolio

yields further benefits. Here the results are a bit mixed, but they suggest that the

general answer may be yes. In terms of the Sharpe ratio and maximum drawdown, the

GMV statistical portfolio does better than the equal-weighted statistical portfolio in

three cases (both data sets in the idealistic setup and the Eurekahedge data set in the

realistic setup) and worse in one case (the CISDM data set in the realistic setup). In

addition, the gains in the cases of outperformance are larger than the losses in the case

of underperformance.

5 Conclusions

We have studied whether it is possible to construct hedge fund portfolios with attractive

return properties based on the past track records of all managers in the investment

universe alone. Importantly, such a strategy must not rely on any hindsight knowledge,

say about which fixed percentage of top managers for a given investment universe and

investment period would have worked well.

Our approach consists of comparing each manager to a given benchmark (which

could be common or be allowed to vary with managers) and then to determine which

managers statistically outperform their benchmark. Such managers are deemed ‘skilled’

and we simply go on to hold an equal-weighted or a global-minimum-variance portfolio

of all skilled managers as our FoF portfolio. This process is repeated, and the portfolios

thus updated, every year.

Crucially, in determining which managers statistically outperform their benchmark,

one must take into account that a large number of managers are examined at the same

time. In other words, one must account for the problem of multiple comparisons (of

managers against benchmark). We do this by employing some state-of-the-art statistical

multiple testing methods. These methods take the non-normal return distributions and

time series nature of hedge fund returns into account to properly control the chance of

non-skilled managers creeping into our FoF portfolio. On the other hand, these methods

are also optimized with respect to detecting as many skilled managers as possible in order

to build a well-diversified portfolio.

We backtested this strategy (without using any hindsight knowledge) on two hedge

fund universes. When comparing the performance of the statistical FoF portfolios to
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their most natural competitor, namely the 1/N portfolio, we found that they deliver

consistent improvements both in terms of the Sharpe ratio and the maximum monthly

drawdown. The return properties are also attractive when compared to two investable

hedge fund indices (based on different investment universes).

While traditional approaches to construct FoFs, such as due diligence, will remain

vital, we believe that statistical selection techniques based on the past track records

alone can be an attractive (and cost efficient) alternative method. Of course, there is

no reason not to combine these two approaches. Indeed, while clearly beyond the scope

of this paper, the combination of more complex traditional approaches with statistical

selection techniques might well result in the best of both worlds.
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End Notes

1. To be sure, there may be other pieces of information as well, such as the general back-

ground of the manager, his investment philosophy, the size and location of his office,

etc. However, such factors are not easily quantifiable and/or available and so they will

be left out for the statistical analysis.

2. Imposing a significance level of 0% is not possible, as it would imply that no manager,

based on a finite track record, could ever be found skilled, no matter how impressive his

track record may be.

3. Again, if we did not allow for a small chance of an ignorant person passing the test,

based on a finite number of tosses, nobody could ever be declared as having ESP even

if she predicts all outcomes correctly.

4. Cinderella enjoyed the help of pigeons who could perfectly tell whether a particular

lentil was ‘good’ or ‘bad’.

5. Put in the context of Cinderella, we do not want even one bad one ending up in the pot.

6. The standard error σ̂n is an estimate of the unknown standard deviation of α̂n.

7. HAC stands for ‘heteroskedasticity and autocorrelation consistent’.

8. Since we are benchmarking against the risk-free rate always, no fund manager that

lost money overall could possibly be considered outperforming.

9. The motivation here is two-fold. On the one hand, such recorded returns might simply

correspond to data-entry mistakes. On the other hand, even if such returns are true,

they may have a large impact on the data analysis because of their undue effect on

sample means, sample standard deviations, and sample Sharpe ratios.

10. The motivation here is that sometimes ‘basically the same fund’ can appear under

slightly different names. We implicitly take the stance that the FoF manager would only

want to invest in one of such funds.

11. We employ the average rate of ask and bid.

12. Of course, recovery rates vary in practice. But this additional knowledge is not

available to us. So to impose a fixed ‘average rate’ appears the best feasible solution.
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13. The results do not change much if this disinvest-reinvest restriction is not imposed.

For the sake of brevity, the results without this restriction are not reported.

14. While annualizing (excess) returns is straightforward, annualzing Sharpe ratios is

not. The usual method of multiplying the monthly Sharpe rations by
√

12 is misleading

for hedge funds due to the autocorrelation of the returns over time; see Lo (2002).
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Gregoriou, G. N., Hübner, G., Papageorgiou, N., and Rouah, F. (2006). Simple hedge

fund strategies as an alternative to funds of funds: evidence from large-cap funds. In

Gregoriou, G. N., editor, Funds of Hedge Funds, Quantitative Finance Series, pages

117–131. Elsevier.

Grinold, R. C. and Kahn, R. N. (2000). Active Portfolio Management. McGraw-Hill,

New York, second edition.

Jobson, J. D. and Korkie, B. M. (1981). Performance hypothesis testing with the Sharpe

and Treynor measures. Journal of Finance, 36:889–908.

Joehri, S. and Leippold, M. (2006). Quantitative hedge fund selection for funds of funds.

In Gregoriou, G. N., editor, Funds of Hedge Funds, Quantitative Finance Series, pages

433–454. Elsevier.

Kosowski, R., Naik, N., and Teo, M. (2007). Do hedge funds deliver alpha? a Bayesian

and bootstrap analysis. Journal of Financial Economics, 84:229–264.

Ledoit, O. and Wolf, M. (2003). Improved estimation of the covariance matrix of stock re-

turns with an application to portfolio selection. Journal of Empirical Finance, 10(5):603–

621.

Ledoit, O. and Wolf, M. (2004). Honey, I shrunk the sample covariance matrix. Journal

of Portfolio Management, 30(4):110–119.

Ledoit, O. and Wolf, M. (2008). Robust performance hypothesis testing with the Sharpe

ratio. Journal of Empirical Finance, 15:850–859.

Lo, A. (2002). The statistics of Sharpe ratios. Financial Analyst Journal, 58:36–42.

20



Memmel, C. (2003). Performance hypothesis testing with the Sharpe Ratio. Finance

Letters, 1:21–23.

Romano, J. P., Shaikh, A. M., and Wolf, M. (2008). Formalized data snooping based

on generalized error rates. Econometric Theory, 24(2):404–447.

Romano, J. P. and Wolf, M. (2005). Stepwise multiple testing as formalized data snoop-

ing. Econometrica, 73(4):1237–1282.

21



A Appendix

A.1 New Shrinkage Estimator for Σ

When estimating a covariance matrix based on (limited) past track records, one should

not use the sample covariance matrix. This is especially true when the estimated covari-

ance matrix is used for purposes of portfolio optimization. The intuitive reason is that

the optimizer will latch on to the large estimation error contained in the sample covari-

ance matrix and produce very unstable portfolios that often yield poor out-of-sample

performance. This important point is discussed by Ledoit and Wolf (2003, 2004) who

also offer a remedy. Namely, shrink the sample covariance matrix to a highly structured

estimator, called the shrinkage target. Such an estimator will be biased, unlike the sam-

ple covariance matrix, but in return contain very little estimation error. Combining the

two estimators via shrinkage will result in an optimal bias-variance trade-off.

Ledoit and Wolf (2003, 2004) suggest shrinkage targets for a universe of stocks: the

single-factor model and the single-correlation model. But targets have common feature:

the diagonal of the matrix is the same as the diagonal of the sample covariance matrix.

As a result, only the sample covariances get shrunken/modified but not the sample

variances.

We feel that such an approach is sub-optimal when dealing with hedge funds instead

of stocks. Due to the wildly varying amounts of risk taken on by the various funds,

already the differences between the sample variances will be overstated. It, therefore,

appears useful to shrink the sample variances in addition to the sample covariances.

Therefore, we propose the two-parameter model as a shrinkage target. It has one

common variance and one common covariance. The estimation of these two parameters

is straightforward. One simply takes the average of all sample variances and the average

of all sample covariances, respectively. One then is left to find a formula for the optimal

shrinkage intensity. The general methodology is outlined in Ledoit and Wolf (2003)

and the details are left to the reader. Computer code in the Matlab language can be

downloaded for free from the following website: http://www.iew.uzh/chairs/wolf.
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A.2 Tables and Figures

Table 1: Performance of Portfolios: Idealistic Setup

# of hedge funds in average average Sharpe maximum

each of the 6 years exc. return return ratio drawdown

CISDM data, investment period: 01/2000–12/2005.

EW-FoF 9, 9, 3, 7, 5, 8 0.38% 0.60% 0.28 −4.22%

GMV-FoF 9, 9, 3, 7, 5, 8 0.42% 0.61% 0.59 −1.47%

1/N 91 0.51% 0.73% 0.20 −10.02%

HFRX Global > 60 0.39% 0.64% 0.28 −3.92%

CS/Tremont 60 0.38% 0.60% 0.48 −2.06%

Eurekahedge data, investment period: 01/2002–12/2007.

EW-FoF 1, 1, 1, 3, 5, 5 0.40% 0.63% 0.57 −1.89%

GMV-FoF 1, 1, 1, 3, 5, 5 0.38% 0.60% 0.64 −0.56%

1/N 54 0.64% 0.86% 0.31 −7.52%

HFRX Global > 60 0.27% 0.49% 0.23 −3.57%

CS/Tremont 60 0.35% 0.57% 0.40 −2.68%

Table 2: Statistical Significance of Outperformance: Idealistic Setup

Alternative hypothesis i=’CISDM’ i=’Eureka’

j=’mean excess return’ µexc

EW-FoF
< µexc

1/N p = 0.35 p = 0.18

j=’Sharpe ratio’ SR1/N < SREW-FoF p = 0.36 p = 0.09

j=’mean excess return’ µexc

GMV-FoF
< µexc

1/N p = 0.38 p = 0.17

j=’Sharpe ratio’ SR1/N < SRGMV-FoF p = 0.20 p = 0.11

Note: If a p-value is smaller than α, then the data supports

the alternative hypothesis at significance level α.
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Table 3: Performance of Portfolios: Realistic Setup

# of hedge funds in average average Sharpe maximum

each of the 6 years exc. return return ratio drawdown

CISDM data, investment period: 01/2000–12/2005.

EW-FoF 10, 14, 13, 14, 10, 11 0.36% 0.58% 0.37 −1.83%

GMV-FoF 10, 14, 13, 14, 10, 11 0.20% 0.41% 0.33 −3.66%

1/N 86,116,160,211,268,371 0.54% 0.76% 0.32 −5.62%

HFRX Global > 60 0.39% 0.61% 0.28 −3.92%

CS/Tremont 60 0.38% 0.60% 0.48 −2.06%

Eurekahedge data, investment period: 01/2002–12/2007.

EW-FoF 18, 21, 21, 21, 10, 9 0.26% 0.48% 0.37 −3.55%

GMV-FoF 18, 21, 21, 21, 10, 9 0.30% 0.53% 0.67 −0.60%

1/N 92,118,137,138,136,119 0.46% 0.68% 0.27 −5.73%

HFRX Global > 60 0.27% 0.49% 0.23 −3.57%

CS/Tremont 60 0.35% 0.57% 0.40 −2.68%

Table 4: Statistical Significance of Outperformance: Realistic Setup

Alternative hypothesis i=’CISDM’ i=’Eureka’

j=’mean excess return’ µexc

EW-FoF
< µexc

1/N p = 0.27 p = 0.17

j=’Sharpe ratio’ SR1/N < SREW-FoF p = 0.34 p = 0.33

j=’mean excess return’ µexc

GMV-FoF
< µexc

1/N p = 0.11 p = 0.26

j=’Sharpe ratio’ SR1/N < SRGMV-FoF p = 0.54 p = 0.11

Note: If a p-value is smaller than α, then the data supports

the alternative hypothesis at significance level α.
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Figure 1: Box Plots of Out-of-Sample Log Excess Returns: Idealistic Setup
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Figure 2: Box Plots of Out-of-Sample Log Excess Returns: Realistic Setup

26


