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A portfolio optimality test based on the�rst-order stohasti dominane riterionExisting approahes to testing for the eÆieny of a given portfolio makestrong parametri assumptions about investor preferenes and return distribu-tions. Stohasti dominane based proedures promise a useful non-parametrialternative. However, these proedures have been limited to onsidering binaryhoies. In this paper we onsider a new approah that onsiders all diversi�edportfolios, and thereby introdue a new onept of �rst-order stohastidominane (FSD) optimality of a given portfolio relative to all possibleportfolios. Using our new test, we show that the US stok market portfoliois signi�antly FSD non-optimal relative to benhmark portfolios formed onmarket apitalization and book-to-market equity ratios. Without appealingto parametri assumptions about the return distribution, we onlude thatno nonsatiable investor would hold the market portfolio in the fae of theattrative premia of small aps and value stoks.I IntrodutionPortfolio analysis and asset priing tests typially fous on the mean-variane riterion.It is well-known that this riterion impliitly assumes a quadrati utility funtion ora normal probability distribution, whih is quite restritive in many ases. A goodillustration of the limitations of the mean-variane riterion omes from (Levy (1998),p.2):\[Consider℄ two alternative investments: x providing $1 or $2 with equal probabil-ity and y providing $2 or $4 with equal probability, with an idential investment of, say,$1.1. A simple alulation shows that both the mean and the variane of y are greaterthan the orresponding parameters of x; hene the mean-variane rule remains silentregarding the hoie between x and y. Yet, any rational investor would (and should)selet y, beause the lowest return on y is equal to the largest return on x."The riteria of stohasti dominane are useful non-parametri alternatives. Mostnotably, �rst-order stohasti dominane (FSD) is one of the basi onepts of deisionmaking under unertainty, relying only on the assumption of nonsatiation, or inreasingutility. It does not require further spei�ation of the shape of the utility funtionor the shape of the probability distribution. FSD analysis is generally more diÆultto implement than mean-variane analysis. There exist well-known, simple tests forestablishing FSD relationships between a pair of hoie alternatives; see, for example,(Levy (1998), Setion 5.2). Unfortunately, these tests have limited use for portfolioanalysis and asset priing tests, beause investors generally an form a large number2



of portfolios by diversifying aross individual assets. Therefore, there is a need todevelop a test for establishing if a given portfolio is \FSD eÆient" relative to allpossible portfolios. Suh a test would be a useful alternative for existing mean-varianeportfolio eÆieny tests (for example, Gibbons, Ross and Shanken (1989)), espeiallyif the return distribution is skewed and fat-tailed.A ompliation in testing FSD portfolio eÆieny is that we must distinguish be-tween eÆieny riteria based on \admissibility" and \optimality". There is a subtledi�erene between these two onepts. A hoie alternative is FSD admissible if andonly if no other alternative is preferred by all nonsatiable deision-makers. A hoiealternative is FSD optimal if and only if it is the optimal hoie for at least somenonsatiable deision-maker. For pairwise omparison, the two onepts are idential;alternative x1 is FSD undominated by alternative x2 if and only if some nonsatiabledeision-maker prefers x1 to x2. However, more generally, when multiple hoie alter-natives are available, FSD admissibility is a neessary but not suÆient ondition forFSD optimality. In other words, a hoie alternative may be admissible even if it is notoptimal for any inreasing utility funtion.Bawa et al. (1985) and Kuosmanen (2004) propose FSD tests that apply undermore general onditions than a pairwise test does. The two tests di�er in a subtleway. While Bawa et al. (1985) onsider all onvex ombinations of the distributionfuntions of a given set of hoie alternatives, Kuosmanen onsiders the distributionfuntion for all onvex ombinations of a given set of hoie alternatives. Eah of thesetwo tests aptures an important aspet of portfolio hoie that is not aptured by apairwise FSD test. Still, both tests miss some key aspet of a proper FSD portfoliooptimality test and both tests generally give a neessary but not suÆient ondition.The linear programming test of Bawa et al. is based on optimality, but it does notaount for full diversi�ation aross the hoie alternatives. Bawa et al. use a setof undiversi�ed base assets as the hoie alternatives. In priniple, diversi�ation anenter through the bak door by inluding ombinations of the base assets as additionalhoie alternatives. However, sine the number of possible ombinations is in�nitelylarge, this approah generally gives only a neessary ondition and it yields a potentiallyvery large omputation load. The mixed integer linear programming test of Kuosmanendoes aount for full diversi�ation, but it relies on admissibility rather than optimality.In this study, we derive a proper test for FSD optimality of a given portfolio relativeto all portfolios formed from a set of hoie alternatives and apply that test to analyzethe US stok market portfolio. In ontrast to Bawa et al. (1985), our test onsidersall diversi�ed portfolios in addition to the individual, undiversi�ed hoie alternatives,and in ontrast to Kuosmanen (2004), it relies on optimality rather than admissibility.Both features lead to a more powerful FSD test, based on a neessary and suÆientondition, than is urrently available.The new test ontributes to reent methodologial developments that make the3



stohasti dominane methodology more appliable to problems in �nanial eonomisby improving the statistial power and providing more eÆient omputation algorithms.Our test is a natural omplement to the seond-order stohasti dominane (SSD)eÆieny test of Post (2003). Due to onavity of utility, the analysis of SSD is generallysimpler than that of FSD. First, SSD admissibility and SSD optimality are equivalentin a portfolio ontext and the de�nition of \SSD eÆieny" is less ambiguous thanthat of \FSD eÆieny".2 Seond, SSD eÆieny an be tested by simply evaluatingthe �rst-order optimality ondition for all individual, undiversi�ed hoie alternatives.Third, the representative utility funtions have a pieewise-linear shape and the �rst-order optimality ondition an be heked by searhing over these funtions using asingle small-sale linear programming problem.We apply our test to US stok market data in order to analyze the FSD optimalityof the market portfolio relative to portfolios formed on market apitalization and book-to-market equity ratio. This appliation seems relevant beause a large lass of apitalmarket equilibrium models predit that the market portfolio is FSD optimal. Surpris-ingly, we �nd that the market portfolio is signi�antly FSD non-optimal. Withoutappealing to parametri assumptions about the return distribution, we onlude thatno nonsatiable investor would hold the market portfolio in the fae of the attrativepremia of small aps and value stoks.The remainder of this text is strutured as follows. Setion II introdues prelim-inary notation, assumptions and de�nitions. Next, Setion III reformulates the FSDoptimality riterion in terms of pieewise-onstant representative utility funtions, inthe spirit of the representative utility funtions used by Russell and Seo (1989). SetionIV develops a linear programming test for searhing over all representative utility fun-tions in order to test portfolio optimality and suggests several approahes to identifyingthe input to this test. Setion V uses a numerial example to illustrate our test andompare it with the two existing tests. Setion VI disusses our empirial analysis ofthe US stok market portfolio. Finally, Setion VII presents onluding remarks andsuggestions for further researh.2Theorem 1 of Post (2003) shows the equivalene using Sion's (1958) Minimax Theorem. Othertreatments of SSD admissibility and optimality inlude Peleg and Yaari (1975), Dybvig and Ross(1982), and Bawa and Goro� (1982, 1983).
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II PreliminariesConsider N hoie alternatives and T senarios with equal probability. The outomesof the hoie alternatives in the various senarios are given byX = 0BBB� x1x2...xT 1CCCAwhere xt = (xt1; xt2; : : : ; xtN ) is the t-th row of matrix X. Without loss of generalitywe an assume that the olumns of X are linearly independent. In addition to the indi-vidual hoie alternatives, the deision-maker may also ombine the hoie alternativesinto a portfolio. We will use � 2 RN for a vetor of portfolio weights and the portfoliopossibilities are given by� = f� 2 RN j10� = 1; �n � 0; n = 1; 2; : : : ; Ng:3The evaluated portfolio is denoted by � 2 � and is assumed to be risky 4. Let y[k℄ bethe k-th smallest element among y1; y2; :::; yN , that is, y[1℄ � y[2℄ � : : : � y[N ℄. Letm = mint;n xtn; m = maxt;n xtn and k(� ) = minft : (X� )[t℄ > (X� )[1℄g:The onstantsm andm are the minimum and maximum possible return. After orderingthe returns of the tested portfolio � from the smallest to the largest one, k(� ) determinesthe order of the seond smallest return. Without ties, we have k(� ) = 2, but if thesmallest value ours multiple times, then k(� ) > 2.Deision-makers obey to the rules of expeted utility theory. Their preferenesbelong to the lass of weakly inreasing utility funtions U1 and their deision-makingproblem an be represented as max�2� TXt=1 u(xt�):(1)3By using the simplex � , we exlude short selling. Short selling typially is diÆult to implement inpratie due to margin requirements and expliit or impliit restritions on short selling for institutionalinvestors. Still, we may generalize our analysis to inlude (bounded) short selling. In fat, the analysisapplies to any portfolio set that takes the form of a polytope (roughly speaking, a non-empty andlosed set that is de�ned by linear restritions) if we replae the N hoie alternatives with the set ofM extreme points of the polytope.4Testing optimality for a riskless portfolio is trivial, beause we then only need to hek if thereexists some portfolio that ahieves a higher minimum return than the riskless rate. If no suh portfolioexists, the riskless alternative is the optimal solution for extreme risk averters and hene FSD optimal.5



Sine utility funtions are unique up to the level of a positive linear transformation,without loss of generality, we may fous on the following set of standardized utilityfuntions:U1(� ) = fu 2 U1 : u(m) = 0; u((X� )[T ℄)� u((X� )[k(� )℄) = 1g:(2) Note that the standardization depends on the evaluated portfolio and hene willdi�er for evaluating di�erent portfolios. Furthermore, the standardization requiresutility to be stritly inreasing at least somewhere in the interior of the range for theevaluated portfolio. This requirement is natural, beause, testing optimality relativeto all u 2 U1 is trivial. Spei�ally, every portfolio � 2 � is an optimal solution foru0 = I(x � (X� )[1℄), that is, two-piee onstant utility funtion. Thus U1(� ) is thelargest subset of U1 for whih testing optimality is non-trivial.De�nition 1:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of (1) for atleast some utility funtion u 2 U1(� ), that is, there exists u 2 U1(� ) suh thatTXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.The intuition behind FSD optimality is that the evaluated portfolio is of potentialinterest to investors if it ahieves a higher expeted utility than all other portfoliosfor some inreasing utility funtion. This onept allows for several variations. Mostnotably, we an hoose between weakly and stritly inreasing utility and we an hoosebetween weakly and strongly higher expeted utility. Empirially, these variationsare often not distinguishable. A weakly inreasing utility funtion u(x) generally isempirially indistinguishable from the stritly inreasing funtion u(x) + ax for somein�nitely small value a > 0. Similarly, in�nitely small data perturbations generallysuÆe to hange a weak inequality to a strong one. In addition, it an be shownthat requiring stritly inreasing utility and strong inequality is the same as weaklyinreasing utility and weak inequality. This study will not try to answer the questionwhih type of utility funtion or inequality is most relevant. Rather, we will fouson aounting for all possible portfolios in an optimality test that is based on weaklyinreasing utility and weak inequality.
6



III Representative utility funtionsThis setion reformulates the optimality riterion in terms of a set of elementary rep-resentative utility funtions. For pairwise FSD omparisons, Russell and Seo (1989)show that the set of three-piee linear utility funtions is representative for all admis-sible utility funtions. In our portfolio ontext, with diversi�ation allowed, a lass ofpieewise onstant utility funtions is relevant:R1(� ) = fu 2 U1ju(y) = TXt = 1 atI(y � (X� )[t℄); a 2 A(� )g(3) A(� ) = fa 2 RT+ : TXt = k(� ) at = 1; (X� )[t℄ = (X� )[s℄ ^ t < s) as = 0;(4) t; s = 1; 2; : : : ; Tgwhere I(y � y0) = 1 for y � y0= 0 otherwise:This lass onsists of at most (T + 1) - piee onstant, upper semi-ontinuous util-ity funtions. This lass is reminisent of the representative utility funtions used byRussell and Seo (1989) to test pairwise FSD relationship. In fat, our utility funtionsan be obtained as a sum of the �rst derivatives of the Russell and Seo (1989) represen-tative utility funtions on the relevant interval (m;m) .5 The utility funtions are alsoreminisent of the pieewise linear funtions used by Post (2003) to test SSD portfolioeÆieny.Theorem 1:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of (1) for atleast some utility funtion u 2 R1(� ), that is, there exists u 2 R1(� ) suh thatTXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.5Russell and Seo (1989) funtions are ontinuous three-piee funtions that onsist of two onstantpiees and one linear, inreasing piee in between. Choose T suh funtions with inreasing pieeswith slopes a1; a2; :::; aT for the intervals ((X�)[1℄; (X�)[2℄), ((X�)[2℄; (X�)[3℄),...,((X�)[T�1℄; (X�)[T ℄),((X�)[T ℄;m). Our pieewise onstant utility funtion is the sum of the �rst derivatives on these intervals.7



Proof:The suÆient ondition follows diretly from R1(� ) � U1(� ). To establish the neessaryondition, suppose that � is optimal for u(y) 2 U1(� ) and letuR(y) = TXt = 1 atI(y � (X� )[t℄);with a1 = u(X� )[1℄, at = 0, t = 2; : : : ; k(� ) � 1 and at = u(X� )[t℄ � u(X� )[t�1℄,t = k(� ); : : : ; T . By onstrution, uR(y) 2 R1(� ). Furthermore, uR(y) � u(y),8y 2 hm;mi and uR(y) = u(y), for y = (X� )[1℄; (X� )[2℄; : : : ; (X� )[T ℄. Therefore,TXt=1 uR(xt� )� TXt=1 uR(xt�) � TXt=1 u(xt� )� TXt=1 u(xt�) 8� 2 �:Sine � is optimal for u(y) 2 U1(� ), the RHS is nonnegative for all � 2 � , andhene � is also optimal for uR(y) 2 R1(� ), whih ompletes the proof. �The proof makes use of the fat that any utility funtion an be transformed intoa pieewise onstant funtion with inrements only at xt� , t = 1; : : : ; T . This trans-formation does not a�et the expeted utility for the evaluated portfolio but it maylower the expeted utility of other portfolios. Sine the objetive is to analyze if theevaluated portfolio is optimal for some utility funtion, only the representative utilityfuntions need to be heked; all other utility funtions are known to put the evaluatedportfolio in a worse perspetive than some representative utility funtion.To illustrate the representation theorem, onsider the ubi utility funtion u(y) =10 + y � 0:1y2 + 0:05y3 and a portfolio with returns (X� )[1℄ = �5, (X� )[2℄ = 1and (X� )[3℄ = 6. Figure 1 shows a version of this funtion that is transformed suhthat it belongs to U1(� ): u0(y) = 2:6+0:04y� 0:004y2+0:002y3 (the solid line). Sinethe latter funtion is obtained after a positive linear transformation, it yields the sameresults as the former funtion. The dashed line gives the pieewise-onstant funtionuR(y) = 2:087I(y � �5) + 0:546I(y � 1) + 0:454I(y � 6). This funtion is onstrutedsuh that it yields exatly the same utility levels for the evaluated portfolio as u0(y)does. Furthermore, the utility levels for all other portfolios are smaller than or equalto those for u0(y). Thus, if the evaluated portfolio is optimal for u0(y), then it isalso optimal for uR(y). A similar analysis applies for every admissible utility funtionu(y) 2 U1(� ). [Insert Figure 1 about here℄8



Apart from replaing U1(� ) with R1(� ), we may also replae � with a reduedportfolio set that onsiders only portfolios with a higher minimum than the evaluatedportfolio: �(� ) = n� 2 � : (X� )[1℄ � (X�)[1℄o :Using the representative utility funtions and the redued portfolio set, we anonstrut the following FSD non-optimality measure for any �0 � �(� ):�(� ;�0) = 1T minu2R1(� )max�2�0 TXt=1 �u(xt�)� u(xt� )� :(5)Replaing � with �(� ) redues the parameter spae but it auses no harm, beausemax�2� TXt=1 �u(xt�)� u(xt� )� = max�2�(� ) TXt=1 �u(xt�)� u(xt� )�for all u 2 R1(� ) with suÆiently large a1 and we minimize the maximum of expetedutility di�erenes. If the evaluated portfolio has the highest minimum then we andiretly onlude that �(� ;�(� )) = 0, that is, the evaluated portfolio is FSD optimal(see the following Corollary).Corollary 1:(i) Portfolio � is FSD optimal if and only if �(� ;�(� )) = 0.Otherwise, �(� ;�(� )) > 0.(ii) If �0 � �(� ) then �(� ;�0) � �(� ;�(� )).The next setion will show that �(� ;�(� )) an be omputed by solving a linearprogramming problem.IV Mathematial Programming AlgorithmThere exist well-known, simple algorithms for establishing FSD-dominane relation-ships between a pair of hoie alternatives; see, for example, (Levy (1998), Setion 5.2).Bawa et al. (1985) derive a linear programming algorithm for FSD optimality relativeto a disrete set of hoie alternatives. Kuosmanen's (2004) test for FSD admissibilityin a portfolio ontext is omputationally more demanding, beause we need to aountfor hanges to the ranking of the portfolio returns as the portfolio weights hange, atask that requires integer programming. A similar ompliation arises for testing FSD9



optimality in a portfolio ontext. This setion develops a linear programming test fortesting portfolio optimality. However, the input to the linear programming test mayrequire an initial phase of mixed integer linear programming (MILP) or subsampling.Before presenting the algorithm, we stress that in some ases, simple neessary orsuÆient onditions will suÆe to lassify the evaluated portfolio as FSD optimal orFSD non-optimal. For example, a pairwise dominane relationship or a non-optimalitylassi�ation by the Bawa et al. suÆe to onlude that the portfolio is FSD non-optimal. Similarly, if the evaluated portfolio is lassi�ed as eÆient aording to amean-variane test or a SSD test, we an onlude that the portfolio is FSD optimal.Let hs(�; � ) = TXt=1 I(xt� � (X� )[s℄); s = 1; : : : ; T(6) h(�; � ) = (h1(�; � ); : : : ; hT (�; � ))(7) H(� ) = fh 2 f0; : : : ; TgT : h = h(�; � ); � 2 �(� )g:(8) Sine hs(�; � ) represents the number of returns of portfolio � exeeding the s-thsmallest return of portfolio � , it an take at most T + 1 values (0; 1; : : : ; T ) for anys = 1; : : : ; T . Thus the set H(� ) has a �nite number of elements. For small-saleappliations, identifying all elements is a fairly trivial task. However, for large-saleappliations, the task is more hallenging and an beome omputationally demanding.Some omputational strategies to identifying the elements of H(� ) are disussed below.Interestingly, given H(� ), the test statisti �(� ;�(� )) an be omputed using simplelinear programming. To see this, onsider the following hain of equalities:�(� ;�(� )) = 1T minu2R1(� ) max�2�(� ) TXt=1 �u(xt�)� u(xt� )�= 1T mina2A(� ) max�2�(� ) TXt=1 TXs=1 as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� ) max�2�(� ) TXt=1 TXs=k(� ) as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� ) max�2�(� ) TXs=k(� ) as TXt=1 I(xt� � (X� )[s℄)� TXt=1 I(xt� � (X� )[s℄)!= 1T mina2A(� ) max�2�(� ) TXs=k(� ) as(hs(�; � )� hs(� ; � ))10



= 1T mina2A(� );Æ8<:Æ : TXs=k(� ) as(hs � hs(� ; � )) � Æ 8h 2 H(� )9=;The RHS of the �nal equality involves the minimization of a linear objetive undera �nite set of linear onstraints. Thus, testing FSD optimality requires solving a simplelinear programming problem and Corollary 1(i) implies the following suÆient andneessary ondition for FSD optimality.Theorem 2:Let H0 � H(� ). Let Æ�(H0) = mina2A(� ) Æ(9) s:t: TXs=k(� ) as(hs � hs(� ; � )) � Æ 8h 2 H0:(10)Portfolio � is FSD optimal if and only if Æ�(H(� )) = 0. If Æ�(H0) > 0 for someH0 � H(� ) then � is FSD non-optimal.The idea of this result is to �nd a representative utility funtion for whih �maximizes expeted utility. Note that �(� ;�(� )) = Æ�=T . Sine a 2 A(� ) andh 2 f0; : : : ; TgT for all h 2 H(� ), using Corollary 1(i), we have 0 � �(� ;�(� )) � 1.Among other things, the theorem implies the following about the relationship be-tween the eÆieny onepts of optimality and admissibility.Corollary 2:If (T � 4) then FSD optimality is equivalent to FSD admissibility.Proof:Without loss of generality, let T = 4 and let � be FSD admissible. Consider allpossible h(�; � ) whih are not dominated by eah other6: h1(�; � ) = (4; 2; 2; 2),h2(�; � ) = (4; 3; 3; 0), h3(�; � ) = (4; 4; 2; 0) and h4(�; � ) = (4; 4; 1; 1). Entering theseandidates in the linear programming test in Theorem 2, we an see that � is the opti-mal portfolio for a representative utility funtion with a2 = a3 = a4 = 1=3, and hene� is FSD optimal.6A dominated h(�; � ) an not hange the solution of (9)-(10).11



The numerial example in the next setion shows that the two eÆieny oneptsdiverge for T � 5.A remaining problem is identifying the elements of the set H(� ). We may adoptseveral strategies for this task. The appendix provides a mixed integer linear program-ming (MILP) algorithm that identi�es a set of andidate vetors eH(� ) � H(� ), andheks if h 2 H(� ) for every andidate h 2 eH(� ). A drawbak of this approah isthat the number of andidates inreases exponentially with the number of senarios(T ). Hene, for large numbers of senarios, this strategy may beome omputationallyprohibitive and some sort of approximation may then be required.For example, we may form a sample Hs(� ) of elements h(�; � ) by using a sample�s 2 �(� ) and onstruting the assoiated values for h(�; � ). The test proedure isthen applied to the sample Hs(� ) instead of the omplete set H(� ). 7 Aording toCorollary 1(ii), this will lead to a neessary ondition for FSD optimality. There existvarious tehniques for performing the sampling task, inluding a regular grid, MonteCarlo methods or Quasi-Monte Carlo methods; see, for example, Jakel (2002) andGlasserman (2004).While the MILP algorithm starts from a large set of andidate vetors and heksfeasibility for every andidate, sampling from the portfolio spae avoids searhing overinfeasible andidates. Of ourse, the limitation of this strategy is that the ritialsample size needed to obtain an aurate approximation inreases exponentially as thenumber of individual hoie alternatives (N) inreases. Still, this approah an yieldan aurate approximation in an eÆient manner if N is low. This is true espeiallywhen the orrelation between the individual hoie alternatives is high and hene smallhanges in the portfolio weights do not lead to large hanges in the values of h(�; � ).An alternative approah is to enrih the Bawa et al. test by inluding the samesample of diversi�ed portfolios �s as additional hoie alternatives. This will lead to amore powerful neessary ondition for FSD optimality than onsidering the undiversi-�ed hoie alternatives only. However, using the sample �s in our test generally leadsto a more favorouble trade-o� between omputation time and numerial auray.Spei�ally, if we apply the Bawa et al. test to a grid with step size s, the relevantlinear program has M � T olumns and M rows, see (Bawa et al. (1985), Setion IC,LP problem at the bottom of p. 423), or dimensions M � T �M , while the dimensionsof our linear program (9)-(10) are T �M , whereM = N�1Yi=1 (1 + 1si)7Sine every h(�; � ) is known to be feasible, we an skip Step 2-5 of the algorithm and take onlyStep 1 and Step 6. Step 1 in this ase boils down to performing pairwise dominane tests between everysampled portfolio and the evaluated portfolio. The omputational burden of the step an be ignored.12



is the number of portfolios from the grid. For example, if we use T = 120 time-seriesobservations, N = 10 base assets and grid step size s = 0:1, the Bawa et al. test hasdimensions 1:11 � 107 � 9:24 � 104, while our program has dimensions 120� 9:24 � 104.V Numerial exampleA numerial example an illustrate our test and the di�erene with the Bawa et al. testand Kuosmanen test. We fous on an example with �ve senarios (T = 5), beauseFSD optimality is equivalent to FSD admissibility for (T � 4) (see Corollary 2).Table 1 shows the returns to three hoie alternatives (X1, X2, X3) and the testedportfolio Z = 0:16X1 + 0:21X2 + 0:63X3 in the �ve senarios (1; 2; 3; 4; 5).[Insert Table 1 about here℄One an immediately see that no individual hoie alternative (X1, X2 and X3)FSD dominates Z; no other alternative involves a 100% hane of a return above �2%and a 20% hane of a return above 7%. However, this does not mean that Z is anoptimal portfolio. Therefore, it is interesting to employ the three eÆieny tests.To implement the Kuosmanen test, we need to solve the following LP problem foreah of the 5! = 120 permutations of Z, say yj = (y1j ; y2j ; y3j ; y4j ; y5j ), j = 1; 2; : : : ; 120,or an equivalent mixed integer linear problem:	j = max�1;�2;�3 15 5Xt=1(�1xt1 + �2xt2 + �3xt3 � ytj)s:t: �1xt1 + �2xt2 + �3xt3 � ytj t = 1; 2; 3; 4; 5�1 + �2 + �3 = 1�1; �2; �3 � 0We �nd 	�j = 0 for every j = 1; 2; : : : ; 120, and hene Z is in the FSD admissible set(not FSD dominated by any onvex ombination of X1, X2 and X3).To test FSD optimality aording to Bawa et al., we need to establish if some onvexombination of the CDFs of X1, X2 and X3 dominates the CDF of Z, see (Bawa et al.,(1985), p. 421, Eq. 5). Table 2 shows the CDFs of the three hoie alternatives (�X1 ,�X2 , �X3) and the CDF of Z (�Z). Note that these CDFs need to be evaluated onlyat the observed return levels: fzjg19j=1.[Insert Table 2 about here℄
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To implement the test, we need to solve the following LP problem, see (Bawa et al.(1985), Setion IC, LP problem at the bottom of p. 423):� = max�1;�2;�3 19Xj=1(�Z(zj)� �1�X1(zj)� �2�X2(zj)� �3�X3(zj))s:t: �1�X1(zj) + �2�X2(zj) + �3�X3(zj) � �Z(zj) j = 1; : : : ; 19�1 + �2 + �3 = 1�1; �2; �3 � 0Solving this problem, we �nd �� = 0, and hene Z is lassi�ed as optimal; not everynonsatiable deision-maker will prefer X1 or X2 or X3 to Z. Based on the positiveoutomes of the two tests, we may be tempted to onlude that Z is the optimalportfolio for some inreasing utility funtion. Perhaps surprisingly, this onlusion iswrong. The appliation of our MILP algorithm will demonstrate this. We will followthe steps outlines in the Appendix.Sine we have already tested FSD admissibility, we start with the seond step ofidentifying the initial andidates for H(� ). For j = 2; 3; 4; 5, we solve (11), wherek(� ) = 2, T = 5, m = �4, m = 10 and X� = Z. (Reall that the onstants m andm are the minimal and maximal possible returns, and k(� ) is the order of the seondsmallest return of � .) Table 3 shows the optimal solutions for h(�; � ) and �. It followsthat hmax = (5; 5; 4; 3; 2). [Insert Table 3 about here℄In this example, we �nd �1 = f(0:1483; 0:8517; 0), (0:1187; 0:8813; 0); (0:9266; 0:0734;0) g, and H1 = f(5; 5; 4; 2; 0); (5; 5; 3; 3; 0); (5; 3; 3; 2; 2)g for the set of orrespondingvalues of h�.In the third step, we apply the stopping rules for the initial andidates. Sineh(� ; � ) = (5; 4; 3; 2; 1), hmaxt > ht(� ; � ) for all t = k(� ); :::; T , hene the suÆientondition of FSD optimality is not ful�lled. Sine �(� ;�1) = 0, the neessary onditionof FSD optimality is also not ful�lled; there exists a deision-maker who prefers � toall portfolios in �1.Thus, we proeed with the fourth step of onstruting and reduing the andidateset H. Sine hmax = (5; 5; 4; 3; 2), the andidate set onsists of 6 � 6 � 5 � 4 � 3 = 2160elements. We exlude andidates for whih a orresponding portfolios an not exist,that is, the members of the sets eH = eH1 [ eH2 [ eH3 [ eH4: The remaining andidatesare: 14



h1 = (5; 5; 4; 1; 1)h2 = (5; 5; 2; 2; 2)h3 = (5; 5; 2; 2; 1)h4 = (5; 5; 2; 1; 1)h5 = (5; 5; 1; 1; 1)h6 = (5; 4; 4; 1; 1)h7 = (5; 4; 2; 2; 2)h8 = (5; 3; 3; 3; 1):Finally, we employ the last two steps of our algorithm. Step 5 tests feasibility ofa remaining andidate using (12). If the andidate is infeasible then we hoose thenext one. If the andidate is feasible then we add it to H1 and we reompute �(� ;H1).Let us start with h1 = (5; 5; 4; 1; 1). This andidate is feasible as it orresponds to� = (0:265; 0:735; 0). Adding this andidate, we onsider �2 = �1 [ (0:265; 0:735; 0)andH2 = H1[(5; 5; 4; 1; 1). Applying Theorem 2, we solve the following linear problem:min Æs.t. a2 +a3 �a5 � Æa2 +a4 �a5 � Æ�a2 +a5 � Æa2 +a3 �a4 � Æa2 +a3 +a4 +a5 = 1We �nd Æ� = 1=9, �(� ;�2) = Æ�=5 = 1=45 > 0. This means that we an not �nd arepresentative utility funtion that rationalizes the evaluated portfolio. Thus, addingportfolio (0:265; 0:735; 0) to �1 suÆes to demonstrate non-optimality in this ase. Notethat this portfolio does not dominate the evaluated portfolio, as the evaluated portfoliois FSD admissible. However, we do know that every well-behaved investor will prefer(0:265; 0:735; 0) or an element of �1 to the evaluated portfolio. Sine the evaluatedportfolio is lassi�ed as FSD non-optimal, the algorithm is omplete. Thus, in thisexample, Z is lassi�ed as optimal aording to Bawa et al. and Kuosmanen tests.Still, it an be demonstrated to be non-optimal for any inreasing utility funtion.We may repeat this exerise for more portfolios � 2 � \ f0; 0:01; : : : ; 1g3, that is,when using a grid with step size 0:01 for the portfolio weights. Figure 2 illustrates theomparison between FSD admissibility and FSD optimality.[Insert Figure 2 about here℄15



The Kuosmanen test reognizes that many diversi�ed portfolios are FSD dominatedby other diversi�ed portfolio, most notably those that assign a high weight to X3. Inthis example, only 22 % of the onsidered portfolios are FSD admissible (the union ofthe grey and blak dots). The FSD optimal set is even smaller than the admissible set.The set of grey dots, inluding Z, is now exluded, leaving only the blak dots. Theredution in the eÆient set to 16 % of all onsidered portfolios ( a 26 % redution)is possible beause the optimality test aknowledges that a hoie alternative may notbe optimal for all investors even if no single other hoie is preferred by all. Note thatthe eÆient regions are not onvex, witness for example the small isolated optimal areanear � = (0; 0:7; 0:3):A similar analysis an be done for FSD optimality aording to Bawa et al. (1985).Figure 3 shows that 93 % of all portfolios is lassi�ed as optimal. Only 17 % of theseportfolios are FSD optimal. The optimal set is substantially larger than ours, beausethe Bawa optimality test does not aount for full diversi�ation.[Insert Figure 3 about here℄As disussed in Setion 3, we an inrease the power of the Bawa et al. test byadding a grid of diversi�ed portfolios to the individual hoie alternatives. Of ourse,this approah will still yield only a neessary ondition, beause it is omputationallyimpossible to inlude all in�nitely many relevant portfolios. In addition, using the samegrid of diversi�ed portfolios in our test will lead to a smaller linear program. Figure4 shows the set of portfolios whih are not lassi�ed as FSD non-optimal using theenrihed Bawa et al. test and our test using the same grid step size.[Insert Figure 4 about here℄There are only small di�erenes in the power of the two tests for s = 0:1. However,our test is roughly 120 times faster than the enrihed Bawa et al. test. For s = 0:01,our test is very powerful: 97% of non-optimal portfolios are orretly lassi�ed as non-optimal. Unfortunately, we were unable to implement the enrihed Bawa et al. test forthis step size due to the exessive omputation load. The di�erenes in omputationload will be even larger for real-life appliations with higher dimensions.VI Empirial appliationTo further illustrate our test, we apply it to US stok market data in order to an-alyze FSD optimality of the market portfolio relative to portfolios formed on mar-ket apitalization of equity (size) and book-to-market equity ratio (B/M). This testseems relevant for asset priing theory, beause all single-period, portfolio-oriented,16



representative-investor models of apital market equilibrium predit that the marketportfolio is optimal for a representative investor with well-behaved preferenes.The investment universe of stoks is proxied by the well-known six value-weightedFama and Frenh portfolios onstruted as the intersetion of two groups formed on size(small aps and large aps) and three groups formed on B/M (growth stok, neutralstoks and value stoks). We proxy the market portfolio by the CRSP all-share index,a value weighted average of ommon stoks listed on NYSE, AMEX, and NADAQ, andthe riskless asset by the one-year US government bond index from Ibbotson Assoiates.We onsider yearly (January-Deember) exess returns from 1963 to 2002 (40 annualobservations).8;9 Exess returns are omputed by subtrating the riskless rate from thenominal returns, that is, the riskless asset always has a return of zero.Table 4 shows some desriptive statistis for our data set. Partiularly puzzling isthe value premium in the small ap segment. The small value stoks earned an averageannual exess return of 13.86 perent, 8.55 perent in exess of the 5.31 perent forsmall growth stoks. It seems diÆult to explain away this premium with risk beausethe small growth stoks atually have a higher standard deviation than the small valuestoks. Indeed, the market portfolio is SSD ineÆient, as shown before by Post (2003).This means that in the fae of attrative premiums from investing in small aps stoksand value stoks, investing in the market portfolio seems not optimal for any risk averseinvestor. [Insert Table 4 about here℄Still, the market portfolio may be FSD optimal, for example, it may be optimalfor investors who are risk seeking for losses and risk averse for gains. Our �rst stepto analysing FSD optimality is to apply the Bawa et al. test. This test lassi�es themarket portfolio as optimal, meaning that some investors prefer the market portfolioto all of the 7 benhmark portfolios (six Fama and Frenh, and the riskless asset).However, as disussed before, the test does not aount for diversi�ation between theseven portfolios. To analyze the e�et of diversi�ation, we an enrih the Bawa et8As disussed in Benartzi and Thaler (1995, p.83), one year is a plausible hoie for the investor'sevaluation period, beause "individual investors �le taxes annually, reeive their most omprehensivereports from their brokers, mutual funds, and retirement aounts one a year, and institutional in-vestors also take the annual reports most seriously." Exess returns are omputed by subtrating theriskless rate from the nominal returns.9There are two reasons for starting in 1963 and omitting the pre-1963 data. First, prior to 1963,the Compustat database is a�eted by survivorship bias aused by the bak�lling proedure exludingdelisted �rms, whih typially are less suessful (Kothari, Shanken and Sloan (1995)). Further, fromJune 1962, AMEX-listed stoks are added to the CRSP database, whih inludes only NYSE-listedstoks before this month. Sine AMEX stoks generally are smaller than NYSE stoks, the relativenumber of small aps in the analysis inreases from June 1962. Sine the value e�et is most pronounedin the small-ap segment, the post-1962 data set is most hallenging.17



al. test by adding diversi�ed portfolios or apply the Kuosmanen test. Using the grid�g = �(� ) \ f0; 0:1; : : : ; 1g7 the enrihed Bawa et al. test already leads to linearprogram with more than 320,000 onstrains and 8,000 variables. We therefore applythe Kuosmanen test, whih involves solving a mixed-integer program with 1,600 integervariables. Interestingly, this test lassi�es the market portfolio as FSD inadmissible andidenti�es the dominating portfolio shown in Figure 5.[Insert Figure 5 about here℄Sine FSD inadmissibility implies FSD non-optimality there is no need to apply ourtest in this ase. Still, it is useful to apply our test for the purpose of illustration andomparison of the omplexity of these three tests.Sine the number of hoie alternatives (7) is small in omparison to the numberof senarios (40), we apply the method of sampling portfolios using the grid: �g =�(� ) \ f0; 0:1; : : : ; 1g7: The assoiating vetors h(�; � ) are olleted in Hg and Hgis used to proxy for H(� ) in the linear programming problem (9)-(10). This linearprogram has only 8,000 onstrains and 40 variables. Therefore our test is muh morefaster than both the Kuosmanen test and enrihed Bawa et al. test for the samegrid. Interestingly, the non-optimality measure is stritly positive; �(� ;�g) = 0:00275.Aording to Corollary 1(ii), this implies that the market portfolio is not optimal forany inreasing utility funtion.Table 5 illustrates the non-optimality lassi�ation. It shows 9 ombinations of the7 benhmark portfolios. For the vetors h(�; � ) assoiated with these ombinations, therestritions in (9)-(10) are binding. This means that the value of the non-optimalitymeasure ritially depends on these vetors. By ontrast, the other vetors an beexluded without a�eting the non-optimality measure. None of these 9 ombinationsFSD dominates the evaluated portfolio. Still, for every inreasing utility funtion, atleast one of these ombinations is better than the market portfolio. Not surprisingly,eah of these portfolios assigns a substantial weight to small ap stoks and/or valuestoks. [Insert Table 5 about here℄The above analysis fouses on sample optimality. It is desirable to aount forsampling error and establish the statistial on�dene we have in population optimality.For mean-variane eÆieny tests, the sampling distribution is well-known, see, forexample Gibbons, Ross and Shanken (1989). The sampling distribution for SD testsis more diÆult to derive, beause the shape of the population return distribution isnot restrited. We therefore resort to the bootstrap method, a well-established tool toanalyze the sensitivity of empirial estimators to sampling variation in situation wherethe sampling distribution is diÆult to obtain analytially.18



Under the assumption of serially IID returns, the empirial return distribution is aonsistent estimator of the population return distribution, and bootstrapping samplesan simply be obtained by randomly sampling with replaement from the empirialreturn distribution. Nelson and Pope (1991) demonstrated in a onvining way thatthis approah an quantify the sensitivity of the empirial return distribution to sam-pling variation, and that SD analysis based on the bootstrapped return distribution ismore powerful that analysis based on the original empirial return distribution. Weimplement this method by generating 10,000 random pseudo-samples and apply ourtests for eah pseudo-sample. We do not apply the enrihed Bawa et al. test or theKuosmanen test, beause of the assoiated omputational burden. Rather, we applyour LP neessary test (9)-(10) using the 9 ombinations from Table 5. In 97.9 % ofthe pseudo-samples, the market portfolio did not pass this neessary test. Then, forthe remaining 2.1% of the pseudo-samples, we apply our LP neessary test (9)-(10)using the grid �g = �(� )\f0; 0:1; : : : ; 1g7. In 0.8% of the pseudo-samples, the marketportfolio failed this neessary test. For the remaining 1.3% of the pseudo-samples, weapplied our neessary and suÆient test. The market portfolio was lassi�ed as FSDoptimal in all of these pseudo-samples. Thus, bootstrap p-value is 1.3% and the marketportfolio an be lassi�ed as signi�antly FSD non-optimal with 98.7% on�dene.The lassi�ation of the market portfolio as FSD non-optimal reinfores Post's(2003) �nding that the market portfolio is SSD ineÆient. This �nding is potentiallyimportant for asset priing theory. All single-period, portfolio-oriented, representative-investor models predit FSD optimality. FSD non-optimality would ontradit allthese models and may all for multi-period models, onsumption-oriented models orheterogeneous-investor models. However, we stress that this appliation serves only toillustrate our non-optimality test. Among other things, the hoie of the benhmarkportfolios and market portfolio, investment horizon and sample period requires moreanalysis than is possible here.VII ConlusionsWe have developed a test for \FSD eÆieny" of a given portfolio that is more powerfulthan urrently available. In ontrast to Bawa et al. (1985), our test ompares theevaluated portfolio not only with the �nite set of individual hoie alternatives, butalso with all portfolios formed by ombining the individual alternatives. In ontrastto Kuosmanen (2004), our eÆieny test is based on the riterion of FSD optimalityrather than the weaker riterion of FSD admissibility.The test an be performed by solving a simple linear programming problem. How-ever, the input to the linear programming problem may require an initial phase of mixedinteger linear programming (MILP). For large numbers of senarios, this strategy may19



beome omputationally prohibitive and we may have to resort to an approximationbased on sampling portfolios from the portfolio possibilities set. This subsamplingapproah improves the trade-o� between omputational omplexity and numerial a-uray ompared with enrihing the Bawa et al. test with diversi�ed hoie alternatives.Using our new test, we showed that the US stok market portfolio is signi�antlyFSD non-optimal relative to benhmark portfolios formed on market apitalization andbook-to-market equity ratio; no nonsatiable investor would hold the market portfolio inthe fae of the small ap premium and the value stok premium. FSD non-optimalitywould ontradit all single-period, portfolio-oriented, representative-investor modelsof apital market equilibrium and would all for multi-period models, onsumption-oriented models or heterogeneous-investor models. The fous of our study is howeveron methodology and a rejetion of market portfolio optimality requires a more rigorousempirial analysis than is possible in this study.AppendixThis appendix provides a MILP algorithm for identifying the elements of H(� ) andsuggests some stopping rules for testing FSD optimality.STEP 1: Perform a FSD admissibility testAs an initial stopping rule, test FSD admissibility of � , for example using the MILPtest of Kuosmanen (2004). If � is FSD inadmissible then stop the algorithm; � is FSDnon-optimal.STEP 2: Identify initial andidates for H(� )For all j = k(� ); :::; T solve the following MILP problem:(11) max hj + 1T 2 PTt = k(� ) hts:t: (vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ;t = k(� ); : : : ; Tht = PTs = 1 vs;t t = k(� ); : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = k(� ); : : : ; T� 2 �(� )The problem is solved only for j >= k(� ); solving it for j < k(� ) will identify no20



new andidates, beause the optimal solutions of (11) for any j < k(� ) is equal to thatfor j = k(� ).Use (h�jt ; ��jt ; v�js;t) for the optimal solution of this problem. Let �1 2 �(� ) be a setof pairwise di�erent ��j (all redundanies are removed). Sethmaxt = maxj h�jtH1 = fh(�; � ) : � 2 �1gSTEP 3: Stopping rulesConsider h(� ; � ) as de�ned by (6)-(7). If there exists t 2 fk(� ); : : : ; Tg suh thathmaxt � ht(� ; � ) then stop the algorithm; � is FSD optimal. Otherwise, solve problem(9)-(10) for H0 = H1. If Æ�(H1) > 0 then stop the algorithm; � is FSD non-optimal.STEP 4: Construt and redue the andidate set HLet Ht = f0; 1; : : : ; hmaxt g. Use H for the artesian produt H = NTk(� )Ht. ClearlyH(� ) � H, and hene H is a andidate set. Exlude the andidates eH = eH1 [ eH2[ eH3 [ eH4; whereeH1 = �h 2 Hjht1 < ht2 for some t1 < t2	eH2 = �h 2 Hjht � ht(� ; � ) 8t 2 fk(� ); : : : ; Tg	eH3 = nh 2 Hj9bh 2 H1 : ht � bht 8t 2 fk(� ); : : : ; Tg with at least onestrit inequalitygeH4 = 8<:h 2 Hjht � �ht(� ; � ) + (1� �) TXj = k(� ) �jh�jt ; 8t 2 fk(� ); : : : ; Tg;8h�j 2 H1; 0 � � � 1; TXj = k(� ) �j = 1; �j � 0; 8j 2 fk(� ); : : : ; Tg 9=; :The elements of eH are not feasible, that is, there exist no orresponding portfolios.The elements of eH1 ontradit the de�nition of vetor h(�; � ), see (6)-(7). In step 1,we have found that � is FSD admissible. Feasibility of an element of eH2 implies FSDinadmissibility of � . Every element of eH3 gives a stritly higher value of the objetivefuntion in (11) for at least one initial andidate. Thus it an not be a feasible andidate.Adding the elements of eH4 to H1 does not a�et the solution of (9)-(10).Set p = 1. 21



STEP 5: Chek feasibility of the remaining andidatesIf H n eH is empty, that is, all possible h 2 H have been onsidered, then stop thealgorithm; portfolio � is FSD optimal. Otherwise, hoose h 2 H n eH and add it to eH.Let p = p+1, Hp = Hp�1 [h and go to the next step if there exists a feasible solutionof the system:(12) s:t: (vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ;t = t1; : : : ; Tht = PTs = 1 vs;t t = t1; : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = t1; : : : ; T� 2 �(� )Otherwise, repeat this step.STEP 6: Test optimality using the feasible andidatesSolve problem (9)-(10) for H0 = Hp. If Æ�(Hp) > 0 then stop the algorithm; � is FSDnon-optimal. Otherwise, go to Step 5.ReferenesBawa, V. S.; J. N. Bodurtha Jr.; M. R. Rao; and H. L. Suri. \On Determination ofStohasti Dominane Optimal Sets." Journal of Finane, 40 (1985), 417{431.Bawa, V. S., and D. L. Goro�. \Admissible, Best and EÆient Choies Under Uner-tainty." U. of Texas Finane Dept. working paper 81/82{2{8 (1982).Bawa, V. S., and D. L. Goro�. \Stohasti Dominane, EÆieny and Separation inFinanial Markets." Journal of Eonomi Theory, 30 (1983), 410{414.Benartzi, S., and R. H. Thaler. \Myopi loss aversion and the equity premium puzzle."Quarterly Journal of Eonomis, 110 (1995), 73{92.Dybvig P. H., and S. Ross. \Portfolio EÆient Sets." Eonometria, 50, 6 (1982), 1525{1546.Gibbons M. R.; S. A. Ross; and J. Shanken. \A test of the eÆieny of a given port-folio." Eonometria, 57 (1989), 1121{1152.Jakel, P. \Monte Carlo Methods in Finane." John Wiley & Sons 2002.Glasserman, P. \Monte Carlo Methods in Finanial Engineering." Springer Verlag 2004.22
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Table 1: Example showing that the Bawa et al. test and the Kuosmanen testdo not give a suÆient ondition for FSD optimality.The table shows the returns in �ve senarios to three hoie individual alterna-tives (X1, X2 and X3) and the tested portfolio Z = 0:16X1+0:21X2+0:63X3.No onvex ombination of X1, X2 and X3 FSD dominates Z and hene Z isFSD admissible. t X1 X2 X3 Z1 -1 6 -4 -1.422 -2 5.90 2 2.183 3.50 2.20 3 2.914 8.70 2 5 4.965 10 7 7.50 7.80
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Table 2: Example showing that the Bawa et al. test and Kuosmanen test donot give a suÆient ondition for FSD optimality{ontinued.The table shows the CDFs of the three individual hoie alternatives(X1; X2; X3) and the tested portfolio Z for all observed return levels. Noonvex ombination of �X1 , �X2 , �X3 dominates �Z and hene Z is lassi�edas optimal. j zj �X1 �X2 �X3 �Z1 -4 0 0 1=5 02 -2 1=5 0 1=5 03 -1.42 1=5 0 1=5 1=54 -1 2=5 0 1=5 1=55 2 2=5 1=5 2=5 1=56 2.18 2=5 1=5 2=5 2=57 2.2 2=5 2=5 2=5 2=58 2.91 2=5 2=5 2=5 3=59 3 2=5 2=5 3=5 3=510 3.5 3=5 2=5 3=5 3=511 4.962 3=5 2=5 3=5 4=512 5 3=5 2=5 4=5 4=513 5.9 3=5 3=5 4=5 4=514 6 3=5 4=5 4=5 4=515 7 3=5 1 4=5 4=516 7.5 3=5 1 1 4=517 7.795 3=5 1 1 118 8.7 4=5 1 1 119 10 1 1 1 1
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Table 3: Initial andidates.The table presents the initial andidates H1 and the assoiated �1(� ) obtainedin Step 2 of our algorithm.j h�1 h�2 h�3 h�4 h�5 ��1 ��2 ��32 5 5 4 2 0 0.1483 0.8517 03 5 5 4 2 0 0.1483 0.8517 04 5 5 3 3 0 0.1187 0.8813 05 5 3 3 2 2 0.9266 0.0734 0
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Table 4: Desriptive statistis.The table shows desriptive statistis for the annual (January-Deember)exess returns of the six Fama and Frenh stok portfolios formed on marketapitalization of equity and book-to-market equity ratio (SG=small growth,SN=small neutral, SV=small value, BG=big growth, BN=big neutral andBV=big value), and the CRSP all-equity index (CRSP). Exess returns areomputed by subtrating the return to the one-year US government bondfrom the nominal returns. The sample period is from 1963 to 2002 (40 annualobservations). Equity data are from Kenneth Frenh and bond data are fromIbbotson Assoiates.Mean St.dev. Skew. Kurt. Min. Max.SG 5.309 28.520 0.323 0.175 -49.28 83.68SN 11.301 22.728 -0.308 0.062 -37.38 65.48SV 13.861 23.158 -0.373 -0.222 -33.86 61.14BG 5.303 18.820 -0.317 -0.537 -40.49 34.67BN 6.340 16.120 -0.241 -0.090 -34.13 34.73BV 8.946 17.723 -0.690 -0.026 -34.24 40.34CRSP 5.536 17.191 -0.602 -0.404 -39.19 31.89
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Table 5: Nine ombinations showing FSD non-optimality of the marketportfolio.The table shows the portfolio weights of 9 ombinations of the six Fama andFrenh stok portfolios formed on size and B/M (SG=small growth, SN=smallneutral, SV=small value, BG=big growth, BN=big neutral and BV=bigvalue), and the riskless alternative (RL). For every inreasing utility funtion,at least one of these nine ombinations is preferred to the market portfolio,and hene the market portfolio is FSD non-optimal.Combination SG SN SV BG BN BV RL1 0 0 0.1 0.3 0.1 0.4 0.12 0 0 0.3 0.2 0 0.2 0.33 0 0 0.4 0 0 0.3 0.34 0 0 0.4 0 0.1 0.3 0.25 0 0 0.6 0 0.1 0 0.36 0 0 0.6 0.2 0 0.1 0.17 0 0.1 0.5 0.1 0.1 0.1 0.18 0 0.1 0.9 0 0 0 09 0 0.2 0.8 0 0 0 0
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Figure 1: Representative utility funtion.The �gure shows the original utility funtion u0 and the assoiated represen-tative utility funtion u1.
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Figure 2: Admissibility and optimality.The �gure shows the eÆieny lassi�ation aording to the FSD admissibilitytest and our FSD optimality test. We applied these tests to all portfolios� 2 � \ f0; 0:01; : : : ; 1g3, that is, when using a grid with step size 0.01 forthe portfolio weights. Our optimal set is represented by the blak dots. Theadmissible set is the union of the blak dots and the grey dots.
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Figure 3: Bawa et al. optimality and FSD optimality.This �gure shows the optimality lassi�ation aording to the Bawa et al. testand our test for FSD optimality. Our optimal set is represented by the blakdots. The Bawa et al. optimal set is the union of the blak dots and the greydots.
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Figure 4: Subsampling approah.The �gure shows the outomes of the Bawa et al. test and our test whenapplied to a grid of portfolios with step size s=0.1 or s=0.01. The grey dotsare portfolios that passed the neessary test; the other portfolios failed the testand are lassi�ed as FSD non-optimal. The perentages of FSD non-optimalportfolios that are deteted using the neessary tests are given below everygraph.
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Figure 5: Pairwise FSD dominane.This �gure shows the CDF of the stok market portfolio (blak line) and thedominating portfolio (grey line): �d = (0; 0:04; 0:43; 0:37; 0:04; 0; 0:13). Sinethe dominating portfolio is preferred by all investors, the market portfolio isFSD inadmissible.
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