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Abstract 

 

We develop a methodology for estimating bias-corrected premium estimates from cross-sectional 

regressions of individual stock returns on time-varying conditional betas. For a comprehensive 

sample of stocks over the post-war period from 1946 through 2011, we find fairly consistent 

evidence of a positive risk premium on the size factor, but limited evidence for the book-to-

market and momentum factors (none for the market factor). Firm characteristics explain a much 

larger proportion of variation in estimated expected returns than factor loadings when return 

premia are taken to be constant. However, we find evidence of predictability in the premia for 

characteristics as well as loadings. Taking this into account, the gap between characteristics and 

loadings narrows (56% versus 44%) for the three-factor model and loadings take the lead (56% 

to 39%) with the addition of the momentum factor. 
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A fundamental paradigm in finance is that of risk and return: riskier assets should earn higher 

expected returns. It is the systematic or nondiversifiable risk that should be priced, and under the 

Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin (1966) this 

systematic risk is measured by an asset’s market beta. While Black, Jensen, and Scholes (1972) 

and Fama and MacBeth (1973) do find a significant positive cross-sectional relation between 

security betas and expected returns, more recently Fama and French (1992) find that the relation 

between betas and returns is negative, though not reliably different from zero. This calls into 

question the link between risk and expected returns. 

There is also considerable evidence of cross-sectional patterns (so-called anomalies) in 

stock returns that raises doubts about the risk-return paradigm. Specifically, price momentum, 

documented by Jegadeesh and Titman (1993), represents the strong abnormal performance of 

past winners relative to past losers. Earnings momentum, documented by Ball and Brown (1968), 

describes the subsequent outperformance of firms reporting unexpectedly high earnings relative 

to firms reporting unexpectedly low earnings. The size and book-to-market effects have been 

empirically established by, among others, Fama and French (1992). In particular, small market 

capitalization stock returns have historically exceeded big market capitalization stock returns, 

and high book-to-market (value) stocks have outperformed their low book-to-market (growth) 

counterparts. Brennan, Chordia, and Subrahmanyam (1998) find that investments based on 

anomalies
1
 result in reward-to-risk (Sharpe) ratios that are about three times as high as that 

obtained by investing in the market, too large it would seem, to be consistent with a risk-return 

model (also see MacKinlay (1995)). 

The behavioral finance literature points to psychological biases on the part of investors to 

explain the breakdown of the risk-return relationship. In contrast, Fama and French (1993) 

propose a three-factor model that includes risk factors proxying for the size- and value-effects, in 

addition to the market excess-return factor, Mkt. The size factor, SMB, is a return spread 

between small firms and big firms, while the value factor, HML, is a return spread between high 

and low book-to-market stocks. There is controversy in the literature as to whether these two 

additional factors are really risk factors, however.  

Although there’s a mechanical relation between loadings and characteristics at the 

portfolio level, there need not be a direct correspondence between loadings and market cap for 

                                                 
1
 Other anomalies include the accruals anomaly of Sloan (1996), the analyst forecast dispersion anomaly of Diether, 

Malloy, and Scherbina (2002), the asset growth anomaly of Cooper, Gulen, and Schill (2008), and the capital 

investment anomaly of Titman, Wei, and Xie (2004) amongst others. See also Fama and French (2008). 
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any given individual stock (similarly for HML).
2
 Thus, the average small-firm loading on SMB 

must be higher than that for big firms (appropriately weighted),  but a particular large-cap stock’s 

price may tend to move more closely with the prices of small-firm stocks than with those of 

other big-firm stocks. Therefore, it’s legitimate to ask whether the underlying firm characteristics 

or the corresponding factor loadings do a better job of tracking expected returns. While Fama 

and French (1993) and Davis, Fama and French (2000) argue that it is factor loadings that 

explain expected returns, Daniel and Titman (1997) contend that it is characteristics. On the 

other hand, Brennan, Chordia, and Subrahmanyam (1998) present evidence that firm 

characteristics explain deviations from the three-factor model, whereas Avramov and Chordia 

(2006) find that size and book-to-market have no incremental effect (momentum and liquidity 

do) when the model’s loadings are time varying. 

While some researchers are inclined to view expected return variation associated with 

factor loadings (betas) as due to risk, and variation captured by characteristics like book-to-

market as due to mispricing, we adopt a more agnostic perspective on this issue. The reason is 

that the betas on an ex-ante efficient portfolio (a potential “factor”) will always fully “explain” 

expected returns as a mathematical proposition (see Roll (1977)), whatever the nature of the 

underlying economic process. This makes it difficult to be sure that a beta effect is truly driven 

by risk. Conversely, if a characteristic is shown to have substantial explanatory power, it is 

difficult to rule out the possibility that this variable lines up well with stock return loadings on 

some omitted risk factor. Thus, the interpretation of such asset pricing results depends on the 

extent to which the particular factor employed plausibly correlates with some notion of aggregate 

marginal utility and whether there is evidence that a given characteristic actually reflects investor 

perceptions or behavior that deviates from rationality. 

Whatever the interpretation, important gaps remain in our knowledge about the relevant 

empirical relations. In fact, we know of no study that directly evaluates how much of the cross-

sectional variation in expected returns is “explained” by betas and how much by characteristics 

in a head-to-head competition. The main goal of this paper is to provide evidence on this issue. 

We do not impose a particular pricing model in this context but, rather, evaluate the role of 

loadings and of characteristics in the cross-sectional relation that best fits the data when both are 

included as explanatory variables. 

                                                 
2
 The regression of SMB on the three Fama-French factors must produce a perfect fit, with a loading of one on itself 

and zero on the other factors. Since the SMB loading equals the difference between the small-firm and big-firm 

portfolio loadings, that difference must equal one.  
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A number of methodological issues arise in this setting. Indeed, the lack of a consensus 

on the betas versus characteristics question stems, in part, from issues of experimental design. 

For example, Brennan Chordia, and Subrahmanyam and Avramov and Chordia work with 

individual stocks and employ risk-adjusted returns as the dependent variable in their cross-

sectional regressions (CSRs). In computing the risk-adjustment, the prices of risk for the given 

factors are constrained to conform to a model’s pricing relation and the zero-beta rate is taken to 

be the risk-free rate. A virtue of this approach is that the well-known errors-in-variables (EIV) 

problem is avoided since the betas do not serve as explanatory variables. Estimates of the 

characteristic premia are thus unbiased. However, the relative contributions of loadings and 

characteristics cannot be inferred from such an experiment. 

More typically, in asset pricing tests, returns are employed as the dependent variable. 

Stocks are grouped into portfolios to improve the estimates of beta and thereby mitigate the EIV 

problem. However, the particular method of portfolio grouping can dramatically influence the 

results (see Lo and MacKinlay (1990) and Lewellen, Nagel, and Shanken (2010)). Using 

individual stocks as test assets avoids this somewhat arbitrary element. Ang, Liu, and Schwarz 

(2010) also advocate the use of individual stocks, but from a statistical efficiency perspective, 

arguing that greater dispersion in the cross-section of factor loadings reduces the variability of 

the risk-premium estimator. Simulation evidence in Kim (1995) indicates, though, that mean-

squared error is higher with individual stocks than it is with portfolios, due to the greater small-

sample bias, unless the risk premium estimator is corrected for EIV bias.
3
 Thus, we employ EIV 

corrections that build on the early work of Litzenberger and Ramaswamy (1979), perhaps the 

first paper to argue for the use of individual stocks, and extensions by Shanken (1992). 

The fact that betas change over time is another important consideration in empirical asset 

pricing, one that is particularly relevant to the debate about betas and characteristics. A study that 

does not accommodate time variation related to underlying firm characteristics like size and 

book-to-market (see Gomes, Kogan, and Zhang (2003) for theoretical motivation) may conclude 

that these characteristics provide incremental explanatory power for expected returns, but only 

because the characteristics proxy for mismeasurement of the true betas (see related work by 

Ferson and Harvey (1998), Lewellen (1999), and Avramov and Chordia (2006)). An important 

                                                 
3
 Ang, Liu, and Schwarz (2010) use an MLE framework with constant betas to develop analytical formulas for EIV 

correction to standard errors, but they do not address the bias in the estimated coefficients. Also, they seem to 

implicitly assume that the factor mean is known, which might explain the huge t-statistics that they report (see 

Jagannathan and Wang (2002) for a similar critique in the context of SDF models).  
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contribution of our paper, in this regard, is the development of an EIV correction for CSRs with 

time-varying conditional betas. Furthermore, we examine the implications of time-varying 

premia for both betas and characteristics. 

Still another methodological issue arises when we estimate betas for each stock using the 

entire time series of returns, in an attempt to improve estimation efficiency. Given some 

surprising early results, we explored the possibility of some sort of contemporaneous bias by 

estimating betas using data separate from the returns in the CSR for a given month. This 

involved a computationally intensive procedure of re-computing betas every month by excluding 

the data for that one month from the time-series factor-model regressions. When it became clear 

that the CSR results were greatly affected by this modification, we looked for an explanation. 

We found that a “one-month bias” can be induced with all data included if the return 

disturbances are heteroskedastic conditional on the factors. This analysis has given rise to an 

additional bias correction that we employ in conjunction with a heteroskedastic version of the 

EIV correction.
4
 

We conduct our tests for a comprehensive sample of NYSE, AMEX and NASDAQ 

stocks over the sample period September 1946 through December 2011. The independent 

variables in our CSRs consist of loadings as well as firm characteristics. The asset pricing model 

betas examined in the paper are those of the CAPM, the Fama and French (1993) three-factor 

model, and a four-factor model that also includes a momentum factor, as in Carhart (1997) and 

Fama and French (2011). While the CAPM is firmly grounded in theory, the multifactor models 

are more empirically driven, but have proven useful in many contexts. The firm characteristics 

that we examine are firm size, book-to-market ratio, and past six-month returns, the latter 

motivated by the work of Jegadeesh and Titman (1993) on momentum. 

The rest of the paper is organized as follows. The next section presents the methodology. 

Section II provides simulation evidence on the finite-sample behavior of the bias corrections that 

we employ. Section III presents the data and Section IV discusses the results. Section V explores 

the impact of time-varying premia. Section VI concludes. 

 

                                                 
4
 Independent research by Gagliardinia, Ossola, and Scaillet (2011) addresses many of the issues considered here. 

They conclude, however, that the premium for market beta is significant (as do Ang, Liu, and Schwartz (2011)), in 

contrast to our bias-corrected results below. 
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I. Methodology 

 We run CSRs of individual stock returns on their factor loadings and characteristics, 

correcting for the various biases discussed above. 

 

I.A. Underlying model 

Time-series regression 

 Let tF  be a 1k  vector of factors. The factors may be traded portfolio return spreads, but 

we do not impose the restriction that their price of risk is equal to the factor mean. Incorporating 

this restriction makes sense when testing the null hypothesis that an asset pricing model provides 

an exact description of expected returns. Here, however, we take it as well established in past 

studies that these models can indeed be rejected. Our focus, instead, is on the competition 

between factor loadings and characteristics in accounting for empirically observed variation in 

expected returns with unconstrained cross-sectional coefficients.  

Traditionally, factor loadings/betas are estimated through time-series regressions of 

excess stock returns on the factors: 

 0 .it i t itiR B B F     (1) 

This regression can be estimated using the entire sample (Black, Jensen, and Scholes (1972)) or 

rolling windows (Fama and MacBeth (1973)). Rolling betas are intended to capture the time-

variation in betas. However, it is unlikely that time-variation in true betas is completely captured 

by the use of rolling betas; dramatic changes in firm fundamentals will only be reflected in these 

betas gradually, whereas the impact on size, book-to-market and implied conditional betas will 

be immediate. Conditioning is done here using macroeconomic variables as well as firm-level 

attributes. While business-cycle variables have been widely used to capture the current state of 

the economy,
5
 the use of firm-level attributes is motivated by Gomes, Kogan, and Zhang (2003) 

who develop a general equilibrium model in which firm-level size and book-to-market ratio are 

correlated with the factor loadings.
6
 

 At this stage, we keep the notation general and let itzts  be a 1p  vector of firm-specific 

characteristics (macro variables are accommodated by getting rid of the i subscript). The first 

                                                 
5
 See, for instance, Shanken (1990) or Ferson and Harvey (1991). 

6
 See Rosenberg and Guy (1976) for one of the first attempts at using firm characteristics to improve beta forecasts. 
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element of the zts  vectors is a constant, so 1p  ; let ( 1)p itzts  denote the corresponding ( 1) 1 p  

subvector that excludes the constant. It is useful to define *

itF  as: 

 ( 1) 1 1 1 1[ , , , ] ,

   
  it p it i t t ipt tF zts zts F zts F  (2) 

a *( 1 ) 1 1    p kp k  vector of independent variables. Then our time-series model for excess 

stock returns itR  can be compactly represented as: 

 
0 ,itit i i itR B B F      (3) 

where *

iB is a *1 k  vector of slope coefficients on the scaled intercept (excluding the constant) 

and the scaled factors (we sometimes refer to these together as the “expanded factors”). In effect, 

we allow for the possibility that the intercept, as well as the betas on each of the factors, vary 

with (lagged) firm characteristics. We can recover the time-varying betas implied by this model 

as follows. Define the *k k  matrix itZts  as:
 7

 

 
10

.
  

  
 

p k

it

k it

Zts
I zts

 

Then the 1 k  vector of implied betas 1itB   on the original factors is given as a function of the 

lagged firm characteristics by: 

 *

1 1 . it i itB B Zts  (4) 

 
Note that the original time-series model can be rewritten as: 
  

 *

0 1: 1 ( 1) 1 1( ) ,      it i i p p it it it tR B B zts B F  (5) 

 

with both the intercept and betas time-varying. Here, *

1: 1i pB  is the subvector of *

iB  consisting of 

the first p−1 components following the constant. 

A typical asset-pricing relation would specify the expected excess returns in terms of 

loadings and factor risk premia. Allowing for the possibility that the zero-beta rate is different 

from the risk-free rate, the asset pricing restriction using time-varying betas can be written as: 
  
 1 0 1 1( ) ,t it itE R B     (6) 

 

                                                 
7
 The submatrix of zeroes captures the fact that the scaled intercept coefficients are not needed here. The   reflects 

the fact that the beta on each original factor is linear in the same conditioning variables. 
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where 0  is the excess zero-beta rate over the risk-free rate, and 1  is a 1k  vector of factor risk 

premia. As in the more traditional empirical asset pricing literature, we initially consider models 

with constant cross-sectional coefficients. Later in the paper, we explore the impact of relaxing 

this assumption and obtain some interesting findings.  

 The use of firm-level attributes distinguishes our conditional models from those proposed 

by Shanken (1990), Ferson and Harvey (1999), as well as Lettau and Ludvigson (2001). These 

studies use macro predetermined or information variables to either scale the factor loadings or 

the coefficients in the model for the stochastic discount factor. Since our conditional-beta models 

include firm attributes, the econometrics must allow for the fact that the scaled factors need not 

be common across the test assets (also see Fama and Fench (1997), Lewellen (1999), and 

Avramov and Chordia (2006)).
8
 

 

Cross-sectional regression 

 The factor prices of risk are traditionally estimated using a two-pass procedure. We adapt 

the Fama and MacBeth (1973) methodology to our setting and utilize the time-varying betas, as 

well as firm characteristics, in CSRs every month. For each month t , using tN  active stocks, 

define 1
ˆ

tB   to be the tN k  matrix of estimated conditional betas. In addition, we utilize a 2 1k  

vector of stock characteristics, 1itzcs . The firm characteristics utilized in the cross-section, zcs , 

may or may not be the same as those used in the time-series regression, zts . Define 1tZcs  to be 

the 2tN k  matrix of these characteristics and define the matrix of independent variables, ˆ
tX , as: 

 1 1
ˆ ˆ[1 : : ]. 

tt N t tX B Zcs  (7) 

 
Each month, estimates of the return premia, 1  on factor loadings and 2  on 

characteristics, are calculated by running a CSR of excess stock returns, Rt , on ˆ
tX . Specifically, 

the cross-sectional coefficients  0 1 2
ˆ ˆ ˆ ˆ, , 't t t t     , are estimated using OLS as: 

 

 1ˆ ˆ ˆ ˆ ˆˆ , where ( ) ,    t t t t t t tA R A X X X  (8) 

 

                                                 
8
 Fama and French (1997) allow SMB beta to vary with size and HML beta to vary with book-to-market in their 

analysis of industry betas. Our approach in calculating conditional beta is closer to that of Avramov and Chordia 

(2006), except that we cross-sectionally demean firm-specific variables (see equation (13)). 



8 

2a (1 ) matrix.   tk k N The time-series average of these estimates yields the overall estimate 

of  . The usual asset-pricing null hypothesis of expected return linearity in the loadings implies 

that the return premium on characteristics, 2 , is zero. In principle, the average zero-beta rate in 

excess of the risk-free rate, 0 , can be different from zero. Employing OLS on individual stocks, 

rather than a more complicated weighted estimator or portfolio-based approach, is consistent 

with our aim of evaluating the relative contributions of loadings and characteristics to the 

expected return for a typical stock.
9
 

Note that with betas linearly related to firm size and book-to-market, variables that are 

also included as cross-sectional characteristics, there is an identification issue. The 

corresponding risk and characteristic premia would not be separately estimable if the time-series 

relations were the same for each stock, as this would create perfect multicollinearity in the CSRs. 

Therefore, identification of 1  and 2  requires some cross-sectional variation in the relevant 

elements of the 

iB s , which we estimate individually for each stock. 

 

I.B. Errors-in-variables problem 

The literature has largely followed the lead of Black, Jensen, and Scholes (1972) and 

Fama and MacBeth (1973) in dealing with the EIV problem by using portfolios as test assets for 

two-pass estimation. As a result, there are relatively few studies using individual stocks in cross-

sectional tests. Fama and French (1992) use individual assets but compute factor loadings from 

test portfolios. This procedure effectively amounts to running CSRs on test portfolios, despite 

using individual stocks in the second-stage regressions (see Ang, Liu, and Schwartz (2010)). 

 

Standard error calculation 

 A measure of precision for the risk premia can be obtained by simply calculating the 

standard error from the time-series of monthly estimates. This is the traditional Fama and 

MacBeth (1973) approach. However, as demonstrated in Shanken (1992), this ignores the EIV 

problem that is introduced by the fact that the betas in the second-stage regressions are estimated 

variables.  

Analytical solutions for correcting the asymptotic standard errors to accommodate the 

EIV problem exist for balanced panels. Shanken provides a correction for the case of constant 

                                                 
9
 We will explore the possible benefits of weighted-least squares estimators in future research. 
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betas. Jagannathan and Wang (1998) provide extensions to deal with non-iid errors. We report 

standard errors based on the Shanken correction. Prelminary exploration of modifications to this 

procedure that exploit the unbalanced panel error structure and estimation of conditional betas 

suggests that these changes make little difference. In fact, the various standard errors are close to 

those of Fama-MacBeth, a typical finding in the literature when traded factors are employed. 

More work needs to be done on this issue, however.
10

  

  

Bias-corrected coefficients 

 EIV not only causes the standard errors to be biased, but also leads to a bias in the 

estimated coefficients – toward zero when the factors are orthogonal. In our empirical work, we 

find that the corrections for this bias are sometimes substantial, even though the EIV standard 

error correction is quite small. Our approach builds on Theorem 5 in Shanken (1992), now 

allowing for estimation of conditional betas and for heteroskedasticity of  it  conditional on tF . 

Relegating the details to Appendix B, the EIV-corrected OLS coefficients are given by: 
 

 
1

1

EIV

ˆ

1

ˆ ˆ ˆ ˆˆ ,
it

tN

t t t tB t

i

X X M M X R







 

     
 

  (9)  

where M is a  21k k k   matrix defined as: 

 
210 0 ,k k k k kM I  

     

and 
1

ˆ
ˆ

itB 

 is the k k  covariance matrix for 1
ˆ

itB : 

 *
1

White

ˆ ˆ1 1
ˆ ˆ ,

it i
it itB B

Zts Zts


 
    

where *

White

ˆ
ˆ

iB
 is the * *k k  White (1980) heteroskedasticity-consistent covariance matrix for the 

OLS time-series estimate of *

iB  in equation (5). M serves to insert zeros where needed, as the 

EIV correction only affects the k k  term, 1 1
ˆ ˆ
 

t tB B . 

 We mentioned earlier, that when the factor-model disturbances are conditionally heteroskedastic, 

an additional bias can be induced due to correlation between the disturbances in a given cross-section of 

returns and the estimates of  beta that serve as the explanatory variables in that CSR. The basic idea in the 

case of a one-factor market model is as follows. As with any regression, the slope estimate will be greater 

(less) than a stock’s true beta if market returns, Rmd, measured as deviations from the mean, happen to be 

                                                 
10

 Substantial standard error adjustments can be obtained with non-traded factors. See, for example Kan, Robotti, 

and Shanken (2010). 
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positively (negatively) related to the return disturbances, εi, in the given sample. Now, a positive link 

between beta estimates and the level of returns will be generated if, in addition, this covariability between 

market deviations and non-market returns tends to be higher when the non-market return is itself higher, 

i.e., E[(Rmdεi)εi] > 0. But this condition amounts to saying that the squared disturbances increase with 

market return deviations. This is precisely the form of conditional heteroskedasticity that we observe 

empirically for the majority of stocks, imparting an upward bias to the estimated market premium.  

Whereas the usual EIV problem relates to the “denominator” of the CSR estimator, this 

one-month bias involves the “numerator.” The correction developed in Appendix C subtracts the 

following term from ˆ 
t tX R  in equation (9): 

2

* * 1 * 2

1

1

1

0

( )

0

tN

t it di di dit it

i

k

bias Zts F F F e







 
 
  
 
  
 

 ,                                            (10) 

where *

diF  is the *iT k matrix of the time series of expanded factors (measured as deviations 

from the sample means) for stock i, *

ditF  is row t of this matrix, and ite  is the OLS factor-model 

residual for stock i at time t. Any systematic relation between the factors and the residual 

variance will be reflected in the product term, * 2
dit itF e . With conditionally homoskedastic errors 

and a balanced panel, however, we show that the corresponding terms must average to zero in 

the overall CSR estimator. This is consistent with the classic scenario analyzed in Shanken 

(1992). 

In Section II, we present evidence from simulations indicating that the proposed 

corrections substantially reduce the bias and mean-squared error of the CSR estimator. 

 

I.C. Relative contribution of betas and characteristics 

 Our main goal is to calculate measures of the relative contribution that loadings or 

characteristics make toward a combined model’s ability to explain cross-sectional expected 

return variation. We approach this problem in the following way. 

 We first compute time-series averages of the premia, ̂ , for the factor loadings as well as 

the characteristics. The motivation is that we are interested in the explanatory power of the 

model based on the true return premia and the average estimates will better approximate that 
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ideal than the individual monthly estimates. Using these average return premia, we calculate the 

expected return each month as: 

 

     

   

beta char

1 0 1 1

beta char

1 1 1 1 1 2

ˆ ,

where

ˆ ˆ ˆ, and .



 

  

   

  

 

t t t t t t

t t t t t t

E R E R E R

E R B E R Zcsr

 (11) 

 

We then calculate the cross-sectional variance of expected return  1t tE R  using the fitted values 

in (11). Likewise, we compute variances for each component of measured expected return. 

 A complication arises, however. To see this, note that the cross-sectional variance of the 

beta-based component of expected returns can be written as 2

1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ/ (1 / )t t t t tB B N B N    
   . As 

in the CSR context, estimation error in the k k  term 1 1
ˆ ˆ

t tB B 
  gives rise to a systematic bias. 

Here, it causes cross-sectional variation in the true loadings to be overstated. Fortunately, 

however, a correction to the variance estimator can be obtained using the same “trick” employed 

in equation (9). 

The ratio of the variance of expected returns computed using the beta component, 

 beta

1t tE R , to the variance of expected returns  1t tE R  based on the full model, gives the 

contribution that factor loadings make to the explanatory power of the full model in month t. 

Similarly, the ratio of the variance of expected returns computed using the characteristics 

component,  char

1t tE R , to the variance of expected returns,  1t tE R , gives the contribution of 

characteristics to the explanatory power of the model. These ratios are averaged over all months 

to obtain a more precise aggregate measure. Note that, without the EIV correction discussed 

above, the role of loadings in the model relative to that of characteristics would be exaggerated. 

Also, keep in mind that the ratios need not add up to one because of covariation between the two 

components of expected return.
11

 

 It is important to note that sampling error in our estimates of the relative contributions of 

betas and characteristics is induced by the fact that we use estimates of the premia.
12

 Deriving 

analytical formulas for the standard errors of the relative contributions appears to be infeasible, 

                                                 
11

 A similar issue arises when decomposing returns into cash flow news and expected return news, as in Campbell 

(1991). 
12

 Although estimation error in ̂  should be the primary source of sampling variability, there is also some variation 

due to the fact that betas are estimated with error. However, we ignore this error in our computations. 
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as these ratios are highly non-linear and time-dependent functions of ̂ . However, we can use 

our knowledge of the (approximate) distribution of ̂  to develop an approximate numerical 

solution. The procedure is as follows. We draw 1,000 normally distributed risk premia with 

moments matched to the average ̂ s and their standard errors. We then repeat the calculations in 

equation (11) for these risk premia and obtain empirical distributions for the corresponding 

relative contributions, as well as their differences. The standard deviations of these empirical 

distributions then serve as our rough standard errors. 

 

II. Simulation Evidence 

 In order to gauge the statistical properties of our bias-corrected estimator of   for the 

sample sizes employed in empirical work, we resort to simulations. A simple data generating 

process is posited, in which returns are governed by factor models with constant betas: 
 
 . it i t itR B F  (12) 
 
We consider a one-factor CAPM model and the three-factor Fama and French (1993) model. At 

the beginning of the simulation, for each stock, market betas are drawn from a N(1.1, 0.5) 

distribution, and the three-factor betas are drawn from N(1.1, 0.4), N(0.9, 0.7), and N(0.2, 0.7) 

distributions, respectively. These parameters are based on the distribution of betas estimated with 

actual data. 

Although we typically focus on ex-ante expected return models like (6) in asset pricing 

analysis, it can be informative to consider expected returns conditional on the factor realizations. 

In this context, the ex-post price of risk, 1 1 ( ( ))   t tF E F , replaces the usual risk premium 

vector, differing only by the unexpected factor component. If the betas were known, there would 

be no bias and the expected value of the CSR estimator for month t, conditional on tF , would 

simply be 1 t . Increasing the number of stocks in a CSR can increase the precision of the 

estimator, but it does not provide any information about that month’s factor surprise. Therefore, 

in comparing various estimators, it makes sense to focus on estimation conditional on the factors. 

Accordingly, we use the actual factor realizations from 1946 to 2011 (792 months) in equation 

(11). 

To incorporate conditional heteroskedasticity, for each stock we need a function that will 

map the realized factors for a given month into a corresponding residual variance. This is 
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implemented as follows. In the actual data, for every stock we run a time-series regression of the 

squared one or three-factor model residuals on the market return and the squared market return. 

This generates a cross-sectional distribution of coefficient vectors and random draws from this 

distribution define the conditional variance function for each simulated stock. The simulation 

then proceeds with the following steps. 

First, for each stock, we randomly select a subset of 144 months from the 792 month 

sample to reflect the actual estimation period for the median stock. Since returns are assumed iid 

over time, the months need not be consecutive. For each simulated stock and each month, we 

calculate a conditional residual variance based on the factors for that month and then randomly 

draw a residual return from a normal distribution with mean zero and the given variance. The 

actual return for the month is computed, as in equation (12), from the stock’s beta(s), the realized 

factor(s), and this residual return. Given the resulting time series of simulated returns, beta(s) can 

then be estimated. 

In this way, beta estimates are generated for all stocks and CSRs are then run, both with 

and without correction for biases, as described in Section I.B. Note that since the number of 

stocks present in any given month is random, the simulation reflects the empirical reality of an 

unbalanced panel of data. Table 1 reports the mean bias (estimate – true value) and root mean 

squared error (RMSE) of the estimated risk premia (across 1,000 simulations) in percent per 

month. We repeat the exercise for different numbers of stocks ranging from 500 to 10,000. Since 

every stock has only 144 out of 792 months of valid data, the average number of stocks in the 

cross-sectional regressions is a bit less than 20% of the total number of stocks. For reference, the 

(ex-post) risk premia for the three factors Mkt, SMB, and HML equal 0.57%, 0.15%, and 0.36% 

per month, the respective factor means over the original sample. 

 Panel A of Table 1 shows the results for the one-factor model. Consistent with the EIV 

perspective, the estimated risk premium without bias correction is consistently lower than its true 

value, by roughly 0.10. Also, this attenuation bias is not eliminated or even reduced as the 

number of stocks increases. Though not shown, there is a persistent upward bias if we only use 

the EIV correction. In contrast, using the one-month correction as well, the bias in the corrected 

risk-premium estimator is much closer to zero (always less than 0.02 in magnitude), though 

surprisingly it increases somewhat with the number of stocks. Bias correction has little effect on 

RMSE with 500 stocks. As the number of stocks increases, however, RMSE declines 

substantially (from 0.14 to 0.03) for the corrected risk premium, while the uncorrected RMSE, 
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which is dominated by the huge EIV bias, barely declines beyond 1,000 stocks. These 

observations are consistent with the discussion in Section I.B. 

 Results for the three-factor model are reported in Panel B of Table 1. The bias in the 

uncorrected risk premia is negative for all three factors. For the market factor, it is substantially 

larger than in Panel A (around −0.17) and fairly large for HML as well (around −0.13). With bias 

correction, it is negative as well, apart from one 500-stock scenario, but greatly reduced for all 

three factors. For example, the bias for HML is around −0.01. With bias correction, RMSE again 

declines sharply as the number of stocks increases, and it is always lower (often much lower) 

than the uncorrected RMSE for the Mkt and HML factors. Improvement for SMB is more 

modest and does not kick in until the number of stocks exceeds 2,000.
13

 

 To summarize, the desirability of employing bias correction when estimating risk premia 

with even a moderately high number of stocks is strongly supported by our simulation 

experiments. 

 

III. Data 

 The data consist of monthly returns, size, book-to-market ratio, and lagged six-month 

returns for a sample of common stocks of NYSE, AMEX, and NASDAQ-listed companies. Book 

values are from Compustat and are calculated following the procedure described in Fama and 

French (1992).
14

 The rest of the stock data come from CRSP. Factors are downloaded from Ken 

French’s website. 

 The book-to-market ratio is calculated as the ratio of the most recently available 

(assumed to be available six months after the fiscal year-end) book value of equity divided by the 

current market capitalization. Book-to-market ratios greater than the 0.995 fractile or less than 

the 0.005 fractile are set equal to the 0.995 and the 0.005 fractile values, respectively. We take 

natural logs of size and book-to-market before using them in time-series or CSRs. The sample 

spans the period July 1946 through December 2011. The start date reflects the fact that there are 

very few companies with valid book-to-market ratios before 1946 (and our simulation evidence 

in Section II suggests large biases and RMSE for CSRs involving only few hundred stocks). 

                                                 
13

 Use of the homoskedastic version of the EIV correction usually gives slightly higher RMSEs. 
14

 Book values from Compustat are supplemented with hand-collected values from Moody’s, whenever available 

(see Davis, Fama, and French (2000) for the exact description of these data). These are available on Kenneth 

French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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 We include only common stocks with share codes 10 or 11 on CRSP. This criterion 

filters out ADRs, units, Americus Trust components, closed-end funds, preferred stocks and 

REITs. To be included in the sample, a stock must also have sufficient data to calculate market 

capitalization and book-to-market ratio for at least 5 years (the observations do not have to be 

continuous). Stocks with prices less than one dollar in a month are not included in the CSR for 

that month (they are included in other months when their prices exceed the one dollar limit). This 

screening process yields an average of 2,715 stocks (1,527 for the sample of NYSE/AMEX 

stocks) per month. The total number of different stocks in the 792-month sample period is 

11,602 (5,644 for the sample of NYSE/AMEX stocks). 

 The macroeconomic variables include term spread (Term) which is the difference in 

yields of 10-year T-notes and three month T-bill, and default spread (Def) which is the difference 

in yields of BBB-rated and AAA-rated corporate bonds. The data for Term and Def are obtained 

from FRED. Fama and French (1989) argue that Def track similar variation in long-term 

business conditions, while Term is related to shorter-term business cycles. 

We use three versions of factor loadings in our regressions. The first is the unconditional 

beta, a natural starting point. This beta is calculated using the entire sample available for each 

stock ( 1 , itzts i t ). The other approaches to estimating loadings condition on ex-ante 

information. Many conditioning variables could be considered in this context, opening the door 

to over fitting, as the estimation approach discussed below involves a large number of interaction 

terms in the time-series regressions. We were also concerned that the EIV correction might be 

less reliable with too many coefficients to estimate in the expanded factor model. Therefore, we 

limited ourselves to the two sets of variables for which there is some clear economic motivation. 

One method conditions on the firm characteristics, size and book-to-market. We standardize 

these characteristics each month before using them in the time-series regression. That is, 

* *[1, , ] ,it it itzts Sz B M  where Sz is ln(market capitalization) and B/M is ln(book-to-market), and a 

star superscript refers to cross-sectional standardization as follows: 

 * ,it t
it

t

Sz m
Sz

s


  (13) 

where mt (st) is the cross-sectional mean (standard deviation) of Sz in month t, computed using 

only NYSE stocks, and B/M
*
 is defined analogously. The other approach conditions on 
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macroeconomic variables, as well as firm characteristics, in the time-series regressions. Here, 

* *[1, , , , ]it it it t tzts Sz B M Def Term i  . 

 Our CSRs also use two different versions of zcs variables. The first set of regressions 

does not utilize zcs at all and the CSRs are run using only factor loadings as independent 

variables. The second set of regressions uses size, book-to-market, and six-month return Ret6 as 

firm characteristics ( [ , , 6 ]it it it itzcsr Sz B M Ret  ), and consistent with most of the literature, the 

firm-characteristics are not cross-sectionally standardized. 

 Table 2 presents summary statistics for all stocks in Panel A and for NYSE/AMEX 

stocks in Panel B. The reported numbers are the time-series means of the monthly cross-sectional 

statistics except for the factor loadings. The loadings are computed for each stock over its entire 

time series and then the summary statistics are computed over the cross-section. The mean 

excess return is 1.25% per month for all stocks and 1.24% for NYSE/AMEX stocks; the median 

excess return for NYSE/AMEX stocks is 0.53% and it is 0.32% for all stocks. Note that the 

median excess returns are far smaller than the means, suggesting that there are some stocks with 

very large monthly returns over the sample period. NYSE/AMEX stocks are larger, with average 

market capitalization of $1.86 billion as compared to $0.98 billion for all stocks. The mean 

(median) book-to-market ratio for all stocks is 1.00 (0.76). Not surprisingly, the mean and the 

median values of the unconditional market betas are approximately one for all stocks, as well as 

for NYSE/AMEX stocks. 

 

IV. Cross-sectional Results 

 We present results for the one-factor CAPM beta, the Fama and French (1993) three-

factor betas, and the four-factor model betas. Separate analysis of these factor models helps in 

analyzing the additional importance of the size, book-to-market and momentum factors using 

conditional betas. We present the standard Fama and MacBeth (1973) coefficients as well as 

bias-corrected coefficients side by side in all our results. This facilitates an evaluation of the 

importance of bias correction to estimated premia. Finally, we report t-statistics based on the 

methodology in Shanken (1992). As mentioned earlier, other standard errors that we considered 

are all close to those reported. 

 Although we show findings with constant betas, along with the conditional beta results, 

the constant beta assumption is almost surely misspecified, which may lead to spurious relations. 
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Therefore, while we include these results for completeness, we give them little weight in our 

conclusions. 

 

IV.A. CAPM 

Table 3 reports results for the one-factor market model. Estimation error in the betas 

should bias the estimated market risk premium downwards. Indeed, correcting for this bias 

substantially increases the risk premium estimates, sometimes by as much as 100% (results not 

shown). There is a second source of bias, however. Conditional residual heteroskedasticity, 

together with the fact that time-series estimation of the betas includes the month of each CSR, 

imparts an upward bias. We find that correcting for both of these offsetting biases (the “bias-

corrected” results shown in the table) yields weakened results for the market premium. 

Consider first the results in Panel A for all stocks. The average number of stocks in the 

cross-section is more than 2,700. The results without bias correction suggest that the market beta 

is priced, with two of the three estimates close to 0.4% per month and t-statistics over two. Upon 

correcting for the two sources of bias, we find that the estimated risk premia are smaller and 

statistically insignificant. Using firm-level conditional betas, the bias-corrected risk premium is 

0.23% and it is just 0.04% per month conditioning on both firm-level and macro variables. 

Henceforth, for brevity, we refer to the latter scenario as firm/macro conditioning on betas. 

 The sample size is an average of 1,527 stocks per month when using NYSE/AMEX 

stocks as test assets (Panel B of Table 3). The estimates of the risk premium are lower in this 

case and, again, are statistically insignificant.
15

 Thus, our conclusions about market beta are 

consistent with the results of Fama and French (1992), who use individual stocks, but assign 

each stock a portfolio-based beta estimate as a way to deal with the EIV problem. 

 Note that, due apparently to the impact of heteroskedasticity, bias correction always 

decreases the risk premium and increases the zero-beta rate in Table 3. The intercepts in second-

pass regressions are around 6% to 11% per year, with t-statistics of 5 or more. Such large 

differences between the zero-beta rate and the risk-free rate, common in the literature going back 

                                                 
15

 As in most of the literature, our t-statistics do not take into account the possibility of deviations from the expected 

return relation. As shown in Kan, Robotti, and Shanken (2011), the impact is likely to be small in applications with 

traded factors that can be closely mimicked by the test assets (also see Shanken and Zhou (2007)). More work is 

needed, however, to derive the implications for our conditional specifications. 
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to Black, Jensen and Scholes (1972) and Fama and MacBeth (1973), are hard to fully reconcile 

with more general versions of the CAPM that incorporate restrictions on borrowing.
16

 

 

IV.A.1. CAPM with additional controls 

 In Table 4, we add firm characteristics along with the market beta as explanatory 

variables in the monthly CSRs. Panel A of Table 4 shows that bias-corrected estimates of the 

market risk premium remain statistically insignificant in the case of the conditional models. Bias 

correction again has a significant impact on coefficient estimates. Conditioning on the firm-level 

attributes or firm/macro variables yields a market risk premium of 0.23% (0.04%) per month 

compared to the sample average return of 0.57%. The premia on firm characteristics are also 

noteworthy—as usual, large firms earn lower returns, value firms earn higher returns, and firms 

with higher past returns continue to earn higher returns and the estimates are highly statistically 

significant. In economic terms, a one standard deviation increase in firm size decreases monthly 

returns by 34 basis points, a one standard deviation increase in the book-to-market ratio leads to 

an increase in returns of 17 basis points per month, and a standard deviation increase in the past 

six month returns raises returns by 32 basis points per month.  

The results for the firm characteristics are similar to those in Brennan, Chordia, and 

Subrahmanyam (1998) and imply rejection of the simple CAPM relation. These authors relate 

beta-adjusted returns to characteristics, with risk premia restricted to equal the factor means and 

the zero-beta rate equal to the riskless rate. In contrast, we let the loadings and characteristics 

compete without constraints on the risk premia or the zero-beta rate. What we learn from the new 

results is that the premia on firm characteristics (specifically size and book-to-market) remain 

significant even when betas are conditioned on the same firm-specific attributes. In other words, 

the explanatory power of firm-specific characteristics documented in the prior literature is not 

only due to an indirect effect on betas, but also manifests itself directly. Next, we will evaluate 

the relative contributions of loadings and characteristics toward explaining cross-sectional 

differences in expected returns. 

 The average cross-sectional adj-R
2
 values (not reported) for Table 4 are higher than those 

for Table 3. This might seem to provide prima-facie evidence about the additional explanatory 

power of characteristics (beyond market beta) in the cross-section of returns. However, one 

cannot draw conclusions about the relative explanatory power of characteristics and betas by 

                                                 
16

 See also Frazzini and Pedersen (2011), who show that high zero-beta rates are obtained for most countries. 
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comparing these adj-R
2
s. To see this, consider a scenario in which the ex-post coefficient on an 

explanatory variable is positive (+x, for instance) and significant in half the sample and negative 

(-x, for instance) and significant in the other half. The computed average of the cross-sectional 

adj-R
2
s could be high even though the coefficient is zero on average and carries no ex-ante 

premium. 

 To address these problems with adj-R
2
s, it is common in the literature to report the adj-R

2
 

from a single regression of average returns on unconditional betas for a set of test asset 

portfolios (see Kan, Robotti, and Shanken (2012)). This is problematic in our context, however, 

as we have time-varying betas and characteristics, and these are for individual stocks. One 

approach would be to report the adj-R
2
 for a regression of average returns on average betas and 

average characteristics. However, a momentum characteristic averaged over time would display 

minimal cross-sectional variation and, therefore, its highly significant explanatory power would 

essentially be neglected by such an adj-R
2
 measure. For these reasons, we do not report adj-R

2
 

for our regressions. Instead, we report measures of the relative contributions of loadings or 

characteristics, as discussed in Section I.C. 

 The last six rows of Table 4 present the contributions that the factor loadings and 

characteristics make toward explaining the variation in expected returns, as well as the 

contribution differences. Numbers in parenthesis below the contributions/differences are rough 

standard errors computed following the procedure in Section I.C. Focusing on bias-corrected 

coefficients with firm/macro conditioning variables, we find that the conditional market beta 

explains only 0.3% (standard error = 3.93%) and the characteristics explain 99.8% (standard 

error = 3.34%) of the variation. With conditioning on firm characteristics only, betas explain a 

bit more, but the 4.4% estimate is still less than one standard error from zero. Clearly, the 

characteristics explain an overwhelming majority of the variation in expected returns. The results 

for NYSE/AMEX stocks in Panel B are similar. 

 

IV.B. Fama-French three-factor model 

Next, we turn our attention to analysis of the Fama and French (1993) three-factor model. 

Table 5 shows the second-stage CSR risk premia estimates for the three factors. Panel A gives 

the results for all stocks. The market risk premium for this (multiple regression) beta is 

statistically significant with constant betas. It is no longer statistically or economically 

significant with bias correction and conditional betas, however, which we find more credible. 
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The risk premium on SMB is large when estimated with conditional betas. For example, 

the bias-corrected estimate of the monthly risk premium on SMB is 0.40% with a t-statistic of 

3.64 (0.33% with a t-statistic of 3.15) when conditioning is done with firm attributes 

(firm/macro). The sample average of the SMB returns is 0.15%, considerably lower than the risk 

premium estimates. 

A surprising feature of Table 5 is that the estimates of the risk premium on HML are 

reliably negative using unconditional betas, whereas the average HML return over our sample 

period is 0.36% per month. A positive premium for HML is obtained when conditioning on firm-

level variables, but the estimate is not reliably different from zero. Conditioning on firm/macro 

variables produces a small positive premium of 0.15% per month with a t-statistic of 1.5. Keep in 

mind, however, that the SMB and HML cross-sectional risk premia need not equal the factor 

means unless the three-factor expected return model holds exactly, a restriction that is rejected 

below. 

The bias-corrected market risk premium for the conditional models with NYSE/AMEX 

stocks in Panel B of Table 5 is once again indistinguishable from zero. The bias-corrected SMB 

risk premium is 0.31% with a t-statistic of 2.84 (0.25% with a t-statistic of 2.36) when estimated 

from betas conditioned on firm-level attributes (firm/macro). When betas are conditioned on 

firm/macro variables the HML premium is 0.26% per month with a t-statistic of 2.49. 

 

IV.B.1. Fama-French model with additional controls 

Next, we include firm characteristics along with the three-factor loadings in our CSRs. 

Panel A of Table 6 presents the results for all stocks. Skipping over the rather odd unconditional 

results, we find that the market risk premium is neither statistically nor economically significant 

for the conditional models. The risk premium for SMB is a statistically significant 0.23% per 

year whether conditioning on firm attributes or on firm/macro variables. The risk premium for 

HML is insignificant for the conditional models. Keep in mind, however, that this coefficient 

captures the partial effect of HML beta, controlling for the book-to-market variable. As earlier, 

the premia on firm characteristics are all statistically and economically significant. A comparison 

of Tables 4 and 6 reveals that these premia are, surprising, not very sensitive to which factor 

model is employed. The premia on firm characteristics are also not much affected by bias 

correction of the coefficients with conditional betas. 
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 There is a controversy in the literature about the interpretation of the size- and value-

effects. Fama and French (1993) and Davis, Fama, and French (2000) argue that these empirical 

phenomena point to the existence of other risk factors, proxied for by SMB and HML. In other 

words, these studies claim that factor loadings explain cross-sectional variation in expected 

returns. Daniel and Titman (1997), on the other hand, show that portfolios of firms with similar 

characteristics but different loadings on the Fama and French factors have similar average 

returns. They conclude from this finding that it is characteristics that drive cross-sectional 

variation in expected returns. None of the studies, however, runs a direct horse race between 

these two competing hypothesis. Our approach using individual stocks is designed so as to 

directly address this controversy. Not only do we allow both factor loadings and characteristics 

to jointly explain the cross-section of returns, but we also permit characteristics to impact stock 

returns indirectly through their effect on conditional betas. 

 The economic magnitudes and statistical significance reported thus far suggest that both 

factor loadings and characteristics matter. But how much? Again, we utilize the methodology 

explained in Section I.C to calculate the relative contributions of factor loadings and 

characteristics in explaining the variation in expected returns.
17

 Betas conditioned on firm-level 

attributes (firm/macro) explain 15% (20%) and characteristics explain 71% (64%) of the model’s 

cross-sectional variation in expected returns. Thus, even after allowing the SMB and HML 

loadings to vary with the associated firm characteristics, characteristics are still dominant, with 

the differences in contributions more than two standard errors above zero.
18

 

Compared to the CAPM results (Table 4), the fraction of expected return variation 

explained by three-factor betas is larger, even though the risk premium on HML is not robust. 

Overall, our results suggest that it is the characteristics that are most useful for explaining 

expected returns. Moreover, these results highlight the importance of using a methodology that 

includes bias correction and conditioning of betas on firm attributes. 

Panels B of Table 6 presents the results for NYSE/AMEX stocks. The market risk 

premium estimates continue to be insignificant for the conditional models. The SMB and HML 

risk premium estimates are positive in the case of the conditional models, and the premium on 

the HML beta is now more than two standard errors above zero with firm/macro betas. Premia 
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 A comparison between our results and those in Daniel and Titman (1997) is complicated by the fact that we use 

additional characteristics (six-month return and turnover) in our cross-sectional regressions. 
18

 It is conceivable that incorporating the estimation error in betas would render the differences statistically 

insignificant in close calls. 
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on firm characteristics continue to be significant, with the same signs as earlier. The dominance 

of characteristics over betas in explaining expected returns is reduced somewhat compared to the 

all-stock findings, and the contribution differences are now less than two standard errors above 

zero. This is partly a reflection of the higher factor risk premium estimates for the HML beta, 

especially when the betas are conditioned on firm/macro variables. 

Thus, while characteristics are the clear winner when all stocks are included in the 

analysis, there is some statistical uncertainty for the NYSE/AMEX universe. 

 

IV.C. The four-factor model 

 Our focus thus far has been on the popular CAPM and Fama and French (1993) three-

factor model betas. In this section, we report results for tests conducted on a four factor model 

that includes the Fama-French factors as well as a momentum factor, MOM (downloaded from 

Ken French’s website). For brevity, we report results only for the entire sample of stocks with 

additional controls in the CSR. Results without cross-sectional controls and/or those using only 

NYSE/AMEX stocks are available upon request. 

 We make one additional modification for tests of this model. We allow betas on the 

momentum factor in the time-series regression to vary with past six-month returns as well as the 

earlier variables. The motivation in this case is based solely on a mechanical argument, rather 

than an economic one – loadings on MOM must be higher overall for winners as compared to 

losers.
19

 The results are reported in Panel A of Table 7. 

 Using bias-corrected coefficients, the MOM risk premium (0.29%) is significant at the 

10% level with firm/macro betas. Although it is still much lower than the MOM sample mean 

(0.76%), the overall contribution of betas rises to 31%, while characteristics explain about 53% 

of the variation in expected returns (20% vs. 64%, earlier for the three-factor model). 

Interestingly, even after inclusion of the momentum factor, six-month return remains highly 

significant as a characteristic in explaining the cross-section of returns. Nonetheless, the 

additional explanatory power for betas is enough to render the contribution difference 

statistically insignificant. 
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 Reasoning as in footnote 2, the difference between the winner and loser portfolio loadings on MOM must equal 

one. Therefore, knowing a stock’s past six-month return, and hence whether it is a winner or loser, provides some 

(albeit imperfect) information about the magnitude of its loading on MOM.  
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IV.D. Additional robustness checks 

  In this subsection, we first take up the task of looking at the importance of the manner in 

which we estimate betas. For brevity, we only report the salient results in the text rather than in a 

tabular format. 

 Another common way of estimating (potentially) time-varying betas is through rolling 

betas. However, as has been noted before, rolling betas reflect new conditioning information 

with a substantial lag. We re-estimate our CSRs with rolling betas calculated using the previous 

five years of monthly data (minimum two years of data). Employing all stocks to estimate a one-

factor model, with firm-specific characteristics as controls in the CSRs, we find that the market 

risk premium is 0.08% per month with a t-statistic of 0.82. The risk premium estimates of the 

three-factor model using all stocks are also economically small and statistically insignificant 

(Mkt=0.11%, SMB=−0.01%, and HML=0.05% per month). 

In addition, we tried using one year of daily data in estimating rolling betas. Our estimate 

of the market risk premium in this case is only 0.06% per month (t-statistic = 0.57). Cosemans, 

Frehen, Schotman, and Bauer (2009) suggest a modification to this basic approach by using a 

MIDAS weighting scheme (where more weight is placed on more recent observations). We 

follow a similar approach in estimating market betas but again find a market risk premium of 

only 0.04% per year (t-statistic = 0.39). To summarize, rolling betas using monthly or daily data 

do not produce economically meaningful risk premium estimates.  

 Two final issues concern inclusion in the CSRs. First, relaxing the constraint that only 

stocks with price greater than $1 are included does not have a material impact on our results. 

Second, recall from Section III that, with estimation of conditional betas in mind, a stock is 

required to have 5 years of data to be in our sample. Once this data threshold is achieved, stocks 

enter the CSRs from the beginning of their return history. This could induce a survivor bias in 

the level of returns although, empirically, the difference in average returns between stocks with 

less than 5 years and stocks that already have 5 years of data, averaged over all months, is just 

0.05% with t-statistic 0.68. That there would be a measureable impact on the betas, return premia 

and, most importantly, the relative contributions of loadings and characteristics, is less clear a 

priori. To explore this issue, we compare three-factor CSR results from 1951-2011, with and 

without the 5-year requirement for inclusion in CSRs imposed. We find a lower contribution 

difference between characteristics and betas with the restriction, paralleling the findings in Table 
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6 for NYSE/AMEX versus all stocks, Whether this simply reflects the fact that anomalies are 

often stronger in certain subsets of stocks cannot easily be determined, however. 

 

V. Allowing for time-varying premia 

 In this section, we consider the possibility that the expected return premia for loadings or 

cross-sectional characteristics are time varying and we examine the impact that this has on our 

measures of the relative contributions to cross-sectional expected return variation. Following 

Ferson and Harvey (1991), we estimate changing premia via time-series regressions of the 

monthly CSR estimates on a set of predictive variables. The idea is that the premium estimate for 

a given month is equal to the true conditional premium plus noise. Therefore, regressing that 

series on relevant variables known at the beginning of each month identifies the expected 

component. 

 As predictive variables (x), we use the dividend-price ratio (D/P), term spread (Term), 

default spread (Def). These variables have frequently been used in predictive regressions for 

aggregate stock and bond returns, e.g., Fama and French (1989). Thus, the time-series regression 

of the  coefficients is: 

 0 1 1
ˆ .t t tc c x v 

    (14) 

 
Using this time-series regression, each month we calculate the fitted values of the prices of risk 

and characteristics as 1 0 1 1
ˆ ˆ ˆfit
t tc c x  

  . We then recalculate the relative contributions as detailed in 

Section I.C using these fitted values 1
ˆ fit
t   rather than average values ̂  as the expected premia: 
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 To conserve space, we present results only for the bias-corrected coefficients and for the 

sample of all stocks. The t-statistics in parentheses below the coefficients are corrected for 

possible heteroskedasticity. Results for the one-factor model are given in Panel A of Table 7. 

With firm-attribute conditional betas, there is only a hint of predictability in the market premium 

related to Def, but more reliable evidence that the size and momentum premia vary negatively 

over time with Def. There is also some evidence that the momentum premium is related to D/P, 

and that the size and value premia are related to Term. Conditioning betas on firm/macro 

variables yields fairly similar evidence except that the momentum coefficient on Def is no longer 
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reliably different from zero. As the three predictive variables are positively correlated, it is 

difficult to develop intuition about their partial effects. Of greater interest is the net impact on 

our relative contribution measures.  

As in Table 4, the contribution of characteristics is over 90% with conditional betas and 

even higher with unconditional betas. For example, the contributions are 94% characteristics and 

11% betas when conditioning betas on Sz and B/M, whereas it was 96%/4% earlier with constant 

premia. The contribution differences continue to be many standard errors above zero.
20

 

Turning to the three-factor model results in Panel B, we see some evidence of 

predictability in the factor risk premia. For both sets of conditioning variables the t-statistics for 

the market premium on D/P and the SMB premium on DEF are greater than two. There is also 

evidence of time-varying characteristic premia. The t-statistics for the size premium on Term are 

less than −3 for both conditional beta approaches. Moreover, each of the characteristic premia 

appears to be related to at least one of the macro predictors when betas are conditioned on firm 

attributes. In fact, the t-statistics on Def exceed two in magnitude for all three characteristics. 

The contribution numbers are 37% betas and 63% characteristics in this case (15%/71% earlier), 

and the difference is now less than two standard errors from zero. With firm/macro betas, DEF is 

no longer significantly related to the characteristic premia. The contribution measures are 44% 

betas and 56% characteristics (20%/64% earlier) and the difference is less than a standard error 

above zero. Thus, the relative contribution of betas has been substantially enhanced in both cases 

by allowing for time-varying premia. 

The four-factor results are given in Panel C. Although there’s at most a hint of time-

variation in the MOM premia, inclusion of the momentum factor eliminates the statistical 

significance of several of the coefficients for time-varying characteristic premia. With betas 

conditioned on firm attributes only, the contribution numbers are 43% betas, 50% characteristics 

(22%/64% earlier), and with firm/macro betas they are 56% betas, 39% characteristics 

(31%/53% earlier). As in the three-factor model, the role of betas is greatly enhanced by 

                                                 
20

 To accommodate the time-varying premia, the procedure in Section I.C is modified as follows. Rather than 

repeatedly sample (unconditional) premia coefficients, we sample values of the coefficients in equation (14) from a 

multivariate normal distribution with mean vector equal to the coefficient estimates and covariance matrix equal to 

the heteroskedasticity-consistent asymptotic covariance matrix for those estimates. The sampled coefficient values 

are then combined with the historical values of the predictive variables to obtain corresponding conditional risk 

premia that are used to recompute values of the contribution numbers based on equation (13). Similar results are 

obtained also allowing for autocorrelation of the disturbances in (12). 
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allowing the premia to vary over time. Although firm/macro betas finally beat out characteristics, 

the difference is not reliably different from zero.   

Thus far, we have not adjusted for small-sample bias of the sort analyzed by Stambaugh 

(1999). This bias arises when a predictor is autocorrelated and innovations in the predictor are 

contemporaneously correlated with return surprises. To explore this issue, we used techniques 

for multiple predictors developed by Amihud and Hurvich (2004) and Amihud, Hurvich and 

Wang (2008). The simpler approach assumes that the best forecast of each predictor only 

requires its own lagged value and accommodates correlation between predictors only through the 

forecast errors. The more general approach relaxes this restriction. Results using the simpler 

approach and firm/macro betas are as follows (not tabulated). For the one-factor model, the 

contribution of beta declines and that of characteristics increases by about 1 percentage point. 

For the three and four-factor models, the contribution of betas actually increases by about 1 

percentage point, while changes in the characteristic contributions are minimal. Applying the 

more general procedure, the declines are even smaller. Thus, the substantial increase in the 

contribution of betas with time-varying premia appears to be a robust finding.
21

 

 

VI. Summary and Conclusions 

 Despite strong theoretical and practical reasons for conducting asset pricing tests using 

individual stocks, there are relatively few studies doing so. The flexibility of the two-pass 

methodology is an advantage over the more general GMM approach in this context. However, 

the major difficulty in two-pass regressions is to properly account for the bias introduced by 

imprecisely estimated individual betas. Therefore, we employ bias-corrected coefficient 

estimators that are adjusted to reflect these estimation errors. One methodological contribution of 

this paper is showing how to do this in a setting that accommodates an unbalanced panel dataset 

of individual stock returns, as well as betas that vary over time with firm characteristics and 

macroeconomic variables. We also identify and develop a correction for an additional bias that 

arises if a researcher wishes to exploit the full time series of returns for each stock in estimating 

conditional betas. Simulations indicate that our corrections for these biases are effective and also 

reduce the mean-square error in estimating the risk premia. 

                                                 
21

 In implementing both approaches, the autocorrelation of D/P is so high that the upward “correction” to this 

parameter implies a non-stationary process. Therefore, we leave the coefficient on D/P unadjusted while correcting 

the other coefficients. If we set the autocorrelation for D/P equal to 1, changes in the relative contributions described 

above are just a bit bigger – half a percentage point or less. 



27 

We document a number of important findings. As in many other studies, the market risk 

premium is never reliably different from zero with our conditional betas (we’re inclined to 

dismiss evidence based on the implausible constant-beta specification). The risk premium for the 

Fama-French size factor, SMB is, for the most part, reliably positive, even when competing with 

the firm size characteristic. The case for the book-to-market factor HML is weak, however. With 

all stocks included in the estimation, the t-statistics for a positive premium range from −0.07 to 

1.50, depending on the specification. There is some evidence of a reliably positive HML 

premium in the NYSE/AMEX universe if we condition betas on both firm-specific and 

macroeconomic variables. We also examine a momentum-factor, but the evidence of a positive 

premium is not quite significant at the 5% level when the MOM loading competes with past 6-

month return. On the other hand, coefficients on the size, book-to-market, and 6-month past 

return characteristics are all highly significant, with the usual signs. This is true even when the 

three- or four-factor loadings are allowed to vary with those same firm characteristics.  

While rejection of these beta-pricing models is not news, we do offer new results on the 

“loadings versus characteristics” controversy. The previous literature has tended to focus on 

whether it is one or the other that ultimately explains differences in expected returns. In contrast, 

we provide an intuitive and simple way to disentangle the relative importance of betas and firm 

characteristics in explaining the cross-section of expected returns. Not surprisingly, there is no 

contest with only a single market beta. The Fama-French factor loadings fare better, however, 

with beta contributions ranging from 15% to 31% (characteristics 59% to 71%) when 

conditioning betas on firm attributes and macro variables. Adding a momentum factor to the 

competition increases the beta contribution from 20% to 31% for the all-stock universe and 

firm/macro betas. Given the substantial error in estimating risk premia, this is enough to make 

the race with characteristics (53% contribution) too close to call statistically. 

We also provide some analysis for the all-stock universe, in which expected return 

premia vary over time with macro variables. Using conditional betas, some evidence of 

predictable premia is found for the market factor, SMB and all three characteristic variables: 

size, book-to-market, and past return. Interestingly, we see a substantial rise in the expected 

return contribution of betas in this context, from 20% with constant premia to 44% with 

changing premia for the three-factor model and from 31% to 56% for the four-factor model (all 

with firm/macro betas). Though betas finally edge out characteristics in the latter case, the 

difference is well below two standard errors from zero. In future work, we hope to gain a better 
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understanding of the manner in which time-varying premia manage to enhance the explanatory 

power of the betas. For now, the bottom line is that both betas and characteristics account for 

considerable cross-sectional variation in expected returns with time-varying premia, and their 

contributions may well be comparable in magnitude. 

We have focused mainly on the CAPM, the Fama and French (1993) model, and the four-

factor models in this paper. It would be of interest to examine the performance and risk premia 

for other asset pricing models as well, using individual stocks and conditional betas. Also, our 

goal here has been to explore the role of conditional betas in cross-sectional asset pricing. The 

properties and uses of conditional betas, for the purposes of portfolio optimization and cost of 

capital calculations deserve an independent study.  
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Table 1: Simulation Results 
The data generating process is: 

,it i t itR B F    

where we use the market excess return in the one-factor model and the Fama and French (1993) 

factors in the three-factor model. At the beginning of the simulation, 1-factor betas are drawn from a 

N(1.1,0.5) distribution, and the three 3-factor betas are drawn from N(1.1,0.4), N(0.9,0.7), and 

N(0.2,0.7) distribution, respectively. We use the actual factor realizations from 1946 to 2011 (792 

months) in the above equation. The residuals are drawn from a normal distribution with mean zero 

and heteroskedastic standard deviation following the procedure described in the text. For each stock, 

we randomly select a subset of 144 months from the 792 month sample (the months need not be 

consecutive) and generate returns for these months. Betas estimated from the first-pass time-series 

regressions are used in the second-pass cross-sectional regressions. The table reports the mean bias 

and root mean squared error (across 1,000 simulations) in percent per month of the estimated risk 

premiums, both without and with EIV correction. The ex-post risk premia for Mkt, SMB, and HML 

equal, 0.57%, 0.15%, and 0.36% per month, respectively. 

 

 Bias  RMSE 

Number of 

stocks 

Bias 

Uncorrected 

Bias 

Corrected 

 Bias 

Uncorrected 

Bias 

Corrected 

      
Panel A: 1-factor model 

 Risk premium on BMkt 

500 -0.1022 -0.0018  0.1457 0.1416 

1,000 -0.0867 -0.0079  0.1127 0.0957 

2,000 -0.1009 -0.0107  0.1128 0.0679 

5,000 -0.1160 -0.0172  0.1207 0.0482 

10,000 -0.1108 -0.0146  0.1130 0.0333 

Panel B: Three-factor model 

 Risk premium on BMkt 

500 -0.1668 -0.0048  0.2044 0.1995 

1,000 -0.1891 -0.0219  0.2079 0.1396 

2,000 -0.1603 -0.0182  0.1711 0.0936 

5,000 -0.1682 -0.0243  0.1724 0.0628 

10,000 -0.1743 -0.0268  0.1764 0.0496 

 Risk premium on BSMB 

500 -0.0438 -0.0044  0.0834 0.1053 

1,000 -0.0423 -0.0019  0.0650 0.0687 

2,000 -0.0369 -0.0019  0.0528 0.0538 

5,000 -0.0392 -0.0001  0.0457 0.0330 

10,000 -0.0378 -0.0015  0.0411 0.0227 

 Risk premium on BHML 

500 -0.1270 0.0016  0.1479 0.1127 

1,000 -0.1246 -0.0064  0.1335 0.0692 

2,000 -0.1301 -0.0106  0.1350 0.0526 

5,000 -0.1346 -0.0131  0.1366 0.0355 

10,000 -0.1270 -0.0118  0.1281 0.0257 
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Table 2: Descriptive statistics 

 

This table presents the descriptive statistics of the main variables used in the paper. Panel A 

presents the monthly results for all stock and Panel B presents results for only NYSE/AMEX 

stocks. Size is the market capitalization in billions of dollars, book-to-market is calculated as the 

ratio of most recently available book-value (assumed available six months after fiscal year-end) 

divided by the current market capitalization, Ret6 is the last six-month return, and turnover is 

calculated as the ratio of shares traded to shares outstanding. Book-to-market ratios greater than 

the 0.995 fractile or less than the 0.005 fractile are set equal to the 0.995 and the 0.005 fractile 

values, respectively. Unconditional betas are calculated from a time-series regression on the 

Fama and French (1993) three-factor model. For all variables, we first calculated the cross-

sectional means, medians, and standard deviations. The numbers reported in the table are the 

time-series averages of these statistics. The sample period is 1946–2011. The sample includes 

only common stocks that have sufficient data to calculate market capitalization and book-to-

market ratio for at least 5 years (the observations do not have to be continuous). 

 

  Mean Median StdDev 

    

Panel A: All stocks 

Excess Return (in %) 1.246 0.324 12.013 

Firm Size ($ billions) 0.975 0.102 4.557 

Book-to-market 0.999 0.757 0.997 

Ret6 (in %) 7.804 4.102 31.420 

Unconditional BMkt 0.992 0.987 0.399 

Unconditional BSMB 0.766 0.684 0.764 

Unconditional BHML 0.317 0.362 0.655 

     

Panel B: NYSE/AMEX stocks 

Excess Return (in %) 1.238 0.525 10.000 

Firm Size ($ billions) 1.855 0.325 6.244 

Book-to-market 0.997 0.773 0.945 

Ret6 (in %) 7.717 4.854 26.095 

Turnover (in %) 0.577 0.412 0.686 

Unconditional BMkt 1.023 1.017 0.343 

Unconditional BSMB 0.668 0.611 0.676 

Unconditional BHML 0.407 0.404 0.524 
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Table 3: Cross-sectional regression of one-factor model with no controls 

This table presents the time-series averages of  coefficients from the following individual stock 

cross-sectional regression:  

 0 1 1  .ˆ
it ft t t it itR R B u       

Panel A presents the monthly results for all stock and Panel B presents results for only 

NYSE/AMEX stocks. Only stocks with price greater than $1 at the end of time t are used in the 

regression at time t. The first row is the coefficient (multiplied by 100) and the second row is t-

statistic calculated as described in the main text. Left-hand side of the table reports bias 

uncorrected coefficients from a regular OLS regression while the right-hand side of the panel 

reports coefficients corrected for the EIV-bias following the procedure described in the text. The 

time-series stock specific-variables are size (Sz), and book-to-market (B/M). Size is the 

logarithm of market capitalization, and book-to-market is calculated as the ratio of most recently 

available book-value (assumed available six months after fiscal year-end) divided by the current 

market capitalization. Book-to-market ratios greater than the 0.995 fractile or less than the 0.005 

fractile are set equal to the 0.995 and the 0.005 fractile values, respectively. The macro variables 

are default spread (Def, difference between BAA- and AAA-rated bonds) and term spread 

(Term, difference between long-term government bond yield and 3-month Treasury-bill rate). 

All time-series variables are cross-sectionally standardized (using only NYSE stocks) before 

being used in the first-stage time-series regression. Nstocks is the average number of stocks used 

in the regression. The sample period is 1946–2011. The sample includes only common stocks 

that have sufficient data to calculate market capitalization and book-to-market ratio for at least 5 

years (the observations do not have to be continuous). 

 

  Bias uncorrected   Bias corrected 

ztsr→ ― Sz, B/M 

Sz, B/M, 

Def, Term   ― Sz, B/M 

Sz, B/M, 

Def, Term 

        

Panel A: All stocks 

Cnst 0.575 0.586 0.699  0.654 0.758 0.937 

 (5.93) (6.57) (7.79)  (5.45) (6.81) (8.53) 

BMkt 0.396 0.376 0.260  0.322 0.225 0.044 

 (2.15) (2.28) (1.67)  (1.58) (1.20) (0.25) 

        

Nstocks 2,715 2,715 2,715  2,715 2,715 2,715 

        

Panel B: NYSE/AMEX stocks 

Cnst 0.558 0.497 0.600  0.641 0.689 0.859 

 (5.91) (6.17) (7.64)  (5.43) (6.11) (7.76) 

BMkt 0.295 0.341 0.231  0.219 0.166 -0.017 

 (1.59) (2.05) (1.48)  (1.08) (0.87) (-0.09) 

        

Nstocks 1,527 1,527 1,527  1,527 1,527 1,527 
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Table 4: Cross-sectional regression of one-factor model with controls 

 

This table presents the time-series averages of  coefficients from the following individual stock 

cross-sectional OLS regression: 

 0 1 1 2 1  .ˆ
 

    it ft t t it t it itBR R zcs u    

The single factor is the market factor. Panel A presents the monthly results for all stock and 

Panels B and C present results for only NYSE/AMEX stocks. Only stocks with price greater than 

$1 at the end of time t are used in the regression at time t. The first row is the coefficient 

(multiplied by 100) and the second row is t-statistic calculated as described in the main text. 

Left-hand side of the table reports bias uncorrected coefficients from a regular OLS regression 

while the right-hand side of the panel reports coefficients corrected for EIV-bias following the 

procedure described in the text. The time-series stock specific-variables are size (Sz), and book-

to-market (B/M). Size is the logarithm of market capitalization, and book-to-market is calculated 

as the ratio of most recently available book-value (assumed available six months after fiscal 

year-end) divided by the current market capitalization. Book-to-market ratios greater than the 

0.995 fractile or less than the 0.005 fractile are set equal to the 0.995 and the 0.005 fractile 

values, respectively. The macro variables are default spread (Def, difference between BAA- and 

AAA-rated bonds) and term spread (Term, difference between long-term government bond yield 

and 3-month Treasury-bill rate). All time-series variables are cross-sectionally standardized 

(using only NYSE stocks) before being used in the first-stage time-series regression. The cross-

sectional variables (zcsit) include size, book-to-market, and the last six-month return (Ret6). The 

cross-sectional variables are not standardized in the regression. Nstocks is the average number of 

stocks used in the regression. The last rows in each panel report the fraction of cross-sectional 

variation in expected returns given by betas and characteristics (the numbers do not add up to 

100 because of covariation). Numbers in parenthesis below the fractions are their standard errors. 

Please refer to the text for further details. The sample period is 1946–2011. The sample includes 

only common stocks that have sufficient data to calculate market capitalization and book-to-

market ratio for at least 5 years (the observations do not have to be continuous). 
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  Bias uncorrected   Bias corrected 

zts→ ― Sz, B/M 

Sz, B/M, 

Def, Term   ― Sz, B/M 

Sz, B/M, 

Def, Term 

Panel A: All stocks 

Cnst 0.581 0.639 0.756  0.620 0.782 0.969 

 (6.12) (7.16) (8.50)  (5.43) (7.20) (9.01) 

BMkt 0.434 0.390 0.275  0.387 0.243 0.056 

 (2.62) (2.52) (1.85)  (2.12) (1.40) (0.33) 

Sz -0.183 -0.177 -0.174  -0.184 -0.182 -0.180 

 (-6.00) (-5.94) (-5.90)  (-6.07) (-6.17) (-6.09) 

B/M 0.326 0.307 0.284  0.334 0.313 0.289 

 (7.04) (6.85) (6.40)  (7.40) (7.33) (6.83) 

Ret6 0.972 1.056 1.105  0.936 0.978 1.044 

 (6.73) (7.66) (7.86)  (6.33) (6.95) (6.49) 

        

Nstocks 2,701 2,701 2,701  2,701 2,701 2,701 

% Betas 12.14 17.52 12.64  7.42 4.40 0.30 

 (7.61) (10.25) (9.95)  (5.74) (5.64) (3.93) 

% Chars 89.16 83.48 88.22  93.96 96.37 99.80 

 (7.18) (10.03) (9.61)  (5.04) (4.91) (3.34) 

% Diff 77.02 65.95 75.58  86.54 91.97 99.50 

 (14.77) (20.27) (19.55)  (10.76) (10.53) (7.26) 

Panel B: NYSE/AMEX stocks 

Cnst 0.693 0.624 0.712  0.806 0.875 1.021 

 (7.54) (7.22) (8.30)  (7.50) (8.14) (9.12) 

BMkt 0.201 0.283 0.194  0.073 0.017 -0.145 

 (1.25) (1.84) (1.31)  (0.42) (0.10) (-0.86) 

Sz -0.100 -0.098 -0.097  -0.103 -0.106 -0.104 

 (-3.64) (-3.55) (-3.51)  (-3.81) (-3.95) (-3.87) 

B/M 0.266 0.250 0.236  0.269 0.251 0.244 

 (5.73) (5.66) (5.38)  (5.85) (5.74) (5.56) 

Ret6 1.142 1.218 1.249  1.081 1.116 1.128 

 (7.27) (8.19) (8.38)  (6.45) (7.13) (7.04) 

        

Nstocks 1,519 1,519 1,519  1,519 1,519 1,519 

% Betas 3.87 12.21 7.93  0.41 0.03 2.62 

 (5.37) (10.38) (9.85)  (3.16) (3.77) (6.58) 

% Chars 94.48 86.01 91.09  99.83 99.77 99.29 

 (6.31) (10.95) (10.24)  (3.97) (3.96) (4.61) 

% Diff 90.61 73.80 83.17  98.41 99.74 96.67 

 (11.65) (21.31) (20.07)  (6.97) (7.44) (11.11) 
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Table 5: Cross-sectional regression of three-factor model with no controls 

 

This table presents the time-series averages of  coefficients from the following individual stock 

cross-sectional regression:  

 0 1 1
ˆ  .it ft t t it itR R B u  

     
 
The three factors are Mkt, SMB, and HML (Fama and French (1993)). Panel A presents the 

monthly results for all stock and Panel B presents results for only NYSE/AMEX stocks. Only 

stocks with price greater than $1 at the end of time t are used in the regression at time t. The first 

row is the coefficient (multiplied by 100) and the second row is t-statistic calculated as described 

in the main text. Left-hand side of the table reports bias uncorrected coefficients from a regular 

OLS regression while the right-hand side of the panel reports coefficients corrected for EIV-bias 

following the procedure described in the text The time-series stock specific-variables are size 

(Sz), and book-to-market (B/M). Size is the logarithm of market capitalization, and book-to-

market is calculated as the ratio of most recently available book-value (assumed available six 

months after fiscal year-end) divided by the current market capitalization. Book-to-market ratios 

greater than the 0.995 fractile or less than the 0.005 fractile are set equal to the 0.995 and the 

0.005 fractile values, respectively. The macro variables are default spread (Def, difference 

between BAA- and AAA-rated bonds) and term spread (Term, difference between long-term 

government bond yield and 3-month Treasury-bill rate). All time-series variables are cross-

sectionally standardized (using only NYSE stocks) before being used in the first-stage time-

series regression. Nstocks is the average number of stocks used in the regression. The sample 

period is 1946–2011. The sample includes only common stocks that have sufficient data to 

calculate market capitalization and book-to-market ratio for at least 5 years (the observations do 

not have to be continuous). 
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  Bias uncorrected   Bias corrected 

zts→ ― Sz, B/M 

Sz, B/M, 

Def, Term   ― Sz, B/M 

Sz, B/M, 

Def, Term 

Panel A: All stocks 

Cnst 0.548 0.415 0.507  0.666 0.613 0.650 

 (6.36) (6.37) (8.45)  (6.26) (5.95) (7.56) 

BMkt 0.423 0.272 0.195  0.444 0.036 0.000 

 (2.49) (1.76) (1.32)  (2.36) (0.21) 0.00 

BSMB 0.130 0.357 0.291  0.008 0.403 0.328 

 (1.15) (3.39) (2.90)  (0.06) (3.64) (3.15) 

BHML -0.225 0.026 0.082  -0.365 0.037 0.151 

 (-2.07) (0.26) (0.85)  (-3.06) (0.33) (1.50) 

        

Nstocks 2,715 2,715 2,715  2,715 2,715 2,715 

Panel B: NYSE/AMEX stocks 

Cnst 0.536 0.434 0.516  0.570 0.595 0.668 

 (6.03) (6.87) (9.09)  (5.16) (6.59) (7.84) 

BMkt 0.383 0.237 0.158  0.446 0.043 -0.046 

 (2.20) (1.51) (1.05)  (2.32) (0.25) (-0.29) 

BSMB 0.048 0.273 0.219  -0.036 0.313 0.248 

 (0.44) (2.64) (2.19)  (-0.32) (2.84) (2.36) 

BHML -0.152 0.088 0.137  -0.255 0.174 0.257 

 (-1.39) (0.88) (1.41)  (-2.11) (1.61) (2.49) 

        

Nstocks 1,527 1,527 1,527  1,527 1,527 1,527 
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Table 6: Cross-sectional regression of three-factor model with controls 

This table presents the time-series averages of  coefficients from the following individual stock 

cross-sectional OLS regression: 

0 1 1 2 1
ˆ  . 

     it ft t t it t it itR R B zcs u    
 

The three factors are Mkt, SMB, and HML (Fama and French (1993)). Panel A presents the 

monthly results for all stock and Panels B and C present results for only NYSE/AMEX stocks. 

Only stocks with price greater than $1 at the end of time t are used in the regression at time t. 

The first row is the coefficient (multiplied by 100) and the second row is t-statistic calculated as 

described in the main text. Left-hand side of the table reports bias uncorrected coefficients from 

a regular OLS regression while the right-hand side of the panel reports coefficients corrected for 

EIV-bias following the procedure described in the text. The time-series stock specific-variables 

are size (Sz), and book-to-market (B/M). Size is the logarithm of market capitalization, and 

book-to-market is calculated as the ratio of most recently available book-value (assumed 

available six months after fiscal year-end) divided by the current market capitalization. Book-to-

market ratios greater than the 0.995 fractile or less than the 0.005 fractile are set equal to the 

0.995 and the 0.005 fractile values, respectively. The macro variables are default spread (Def, 

difference between BAA- and AAA-rated bonds) and term spread (Term, difference between 

long-term government bond yield and 3-month Treasury-bill rate). All time-series variables are 

cross-sectionally standardized (using only NYSE stocks) before being used in the first-stage 

time-series regression. The cross-sectional variables (zcsit) include size, book-to-market, and the 

last six-month return (Ret6). The cross-sectional variables are not standardized in the regression. 

Nstocks is the average number of stocks used in the regression. The last rows in each panel 

report the fraction of cross-sectional variation in expected returns given by betas and 

characteristics (the numbers do not add up to 100 because of covariation). Numbers in 

parenthesis below the fractions are their standard errors. The sample period is 1946–2011. The 

sample includes only common stocks that have sufficient data to calculate market capitalization 

and book-to-market ratio for at least 5 years (the observations do not have to be continuous). 
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  Bias uncorrected   Bias corrected 

zts→ ― Sz, B/M 

Sz, B/M, 

Def, Term   ― Sz, B/M 

Sz, B/M, 

Def, Term 

Panel A: All stocks 

Cnst 0.582 0.497 0.572  0.444 0.616 0.696 

 (6.68) (7.30) (9.02)  (3.54) (6.52) (7.78) 

BMkt 0.704 0.325 0.228  1.525 0.192 0.053 

 (4.23) (2.13) (1.55)  (7.01) (1.13) (0.33) 

BSMB -0.212 0.294 0.254  -1.011 0.228 0.225 

 (-1.99) (2.85) (2.58)  (-8.22) (2.00) (2.14) 

BHML -0.384 -0.034 0.043  -0.730 -0.007 0.102 

 (-3.71) (-0.34) (0.45)  (-5.95) (-0.07) (0.97) 

Sz -0.253 -0.109 -0.108  -0.437 -0.126 -0.116 

 (-11.45) (-5.87) (-6.10)  (-12.73) (-5.48) (-5.63) 

B/M 0.370 0.303 0.257  0.375 0.275 0.211 

 (10.73) (10.70) (9.47)  (8.96) (7.92) (6.30) 

Ret6 0.910 1.079 1.127  0.893 1.081 1.244 

 (6.87) (9.34) (10.09)  (5.77) (8.91) (10.28) 

        

Nstocks 2,701 2,701 2,701  2,701 2,701 2,701 

% Betas 36.51 35.35 36.84  111.34 15.02 19.52 

 (10.37) (11.79) (12.39)  (13.49) (9.68) (9.96) 

% Chars 110.31 53.04 50.14  161.58 70.59 64.02 

 (9.79) (13.20) (13.77)  (8.29) (13.53) (12.39) 

% Diff 73.80 17.69 13.30  50.24 55.57 44.49 

 (15.29) (24.48) (25.88)  (17.77) (22.30) (22.07) 
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  Bias uncorrected   Bias corrected 

zts→ ― Sz, B/M 

Sz, B/M, 

Def, Term   ― Sz, B/M 

Sz, B/M, 

Def, Term 

Panel B: NYSE/AMEX stocks 

Cnst 0.700 0.514 0.572  0.679 0.657 0.711 

 (7.64) (7.55) (9.10)  (5.25) (6.76) (7.71) 

BMkt 0.563 0.230 0.148  1.262 -0.009 -0.107 

 (3.34) (1.49) (0.99)  (5.82) (-0.05) (-0.66) 

BSMB -0.355 0.214 0.178  -1.108 0.212 0.176 

 (-3.74) (2.13) (1.82)  (-9.29) (1.81) (1.65) 

BHML -0.324 0.037 0.108  -0.681 0.125 0.246 

 (-3.25) (0.37) (1.13)  (-5.80) (1.11) (2.29) 

Sz -0.210 -0.053 -0.054  -0.393 -0.060 -0.055 

 (-10.58) (-3.30) (-3.54)  (-11.71) (-2.62) (-2.81) 

B/M 0.285 0.215 0.180  0.292 0.179 0.123 

 (7.73) (7.51) (6.64)  (6.51) (4.85) (3.47) 

Ret6 1.063 1.193 1.240  0.996 1.125 1.310 

 (7.24) (9.34) (10.15)  (5.60) (8.15) (10.08) 

        

Nstocks 1,519 1,519 1,519  1,519 1,519 1,519 

% Betas 53.58 30.05 32.60  153.62 21.13 31.33 

 (15.72) (13.28) (13.21)  (14.82) (12.18) (11.74) 

% Chars 130.01 58.00 56.19  182.27 60.42 58.75 

 (9.53) (15.37) (15.20)  (12.14) (14.52) (12.77) 

% Diff 76.43 27.96 23.59  28.65 39.29 27.43 

 (19.36) (28.28) (28.17)  (22.30) (26.11) (23.92) 
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Table 7: Cross-sectional regression of four-factor model with controls 

 

This table presents the time-series averages of  coefficients from the following individual stock 

cross-sectional OLS regression: 

0 1 1 2 1
ˆ  . 

     it ft t t it t it itR R B zcs u    

This table presents the results from a four-factor model where the factors are Mkt, SMB, HML, 

and MOM. The sample includes all stocks listed on NYSE, AMEX, and NASDAQ. Only stocks 

with price greater than $1 at the end of time t are used in the regression at time t. The first row is 

the coefficient (multiplied by 100) and the second row is t-statistic calculated as described in the 

main text. Left-hand side of the table reports bias uncorrected coefficients from a regular OLS 

regression while the right-hand side of the panel reports coefficients corrected for EIV-bias 

following the procedure described in the text. The time-series stock specific-variables are size 

(Sz), book-to-market (B/M), and last six-month return (Ret6). Size is the logarithm of market 

capitalization, and book-to-market is calculated as the ratio of most recently available book-

value (assumed available six months after fiscal year-end) divided by the current market 

capitalization. Book-to-market ratios greater than the 0.995 fractile or less than the 0.005 fractile 

are set equal to the 0.995 and the 0.005 fractile values, respectively. The macro variables are 

default spread (Def, difference between BAA- and AAA-rated bonds) and term spread (Term, 

difference between long-term government bond yield and 3-month Treasury-bill rate). All time-

series variables are cross-sectionally standardized (using only NYSE stocks) before being used in 

the first-stage time-series regression. The cross-sectional variables are not standardized in the 

regression. Nstocks is the average number of stocks used in the regression. The last row reports 

the fraction of cross-sectional variation in expected returns given by betas and characteristics 

(the numbers do not add up to 100 because of covariation). Numbers in parenthesis below the 

fractions are their standard errors. The sample period is 1946–2011. The sample only includes 

common stocks that have sufficient data to calculate market capitalization and book-to-market 

ratio for at least 5 years (the observations do not have to be continuous). 
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  Bias uncorrected   Bias corrected 

zts→ ― 

Sz, B/M, 

Ret6 

Sz, B/M, 

Ret6, 

Def, Term    ― 

Sz, B/M, 

Ret6 

Sz, B/M, 

Ret6, 

Def, Term 

4-factor model 

Cnst 0.584 0.515 0.566  0.288 0.589 0.689 

 (6.89) (7.93) (9.38)  (2.19) (6.17) (7.99) 

BMkt 0.709 0.305 0.233  1.855 0.196 0.078 

 (4.30) (2.00) (1.60)  (8.05) (1.12) (0.49) 

BSMB -0.193 0.282 0.255  -1.016 0.252 0.237 

 (-1.80) (2.77) (2.62)  (-8.10) (2.21) (2.26) 

BHML -0.386 -0.007 0.059  -0.763 0.044 0.116 

 (-3.73) (-0.08) (0.64)  (-5.71) (0.38) (1.14) 

BMOM 0.268 0.166 0.157  0.689 0.267 0.285 

 (1.81) (1.20) (1.18)  (2.21) (1.17) (1.86) 

Sz -0.247 -0.102 -0.097  -0.465 -0.107 -0.100 

 (-11.52) (-5.62) (-5.64)  (-13.38) (-4.44) (-5.06) 

B/M 0.362 0.308 0.261  0.373 0.275 0.231 

 (11.10) (11.84) (10.34)  (8.64) (8.00) (7.40) 

Ret6 0.890 1.147 1.210  0.861 1.250 1.298 

 (6.87) (11.88) (13.00)  (5.36) (7.54) (11.48) 

        

Nstocks 2,701 2,701 2,701  2,701 2,701 2,701 

% Betas 37.22 37.31 44.24  110.05 21.56 31.37 

 (10.22) (10.98) (10.64)  (12.99) (10.53) (9.47) 

% Chars 107.87 51.69 44.14  157.99 63.61 53.21 

 (9.92) (11.73) (11.13)  (9.76) (12.87) (10.53) 

% Diff 70.65 14.38 -0.11  47.94 42.04 21.84 

 (15.29) (22.36) (21.59)  (17.54) (22.89) (19.79) 
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Table 8: Time variation in prices of risk and characteristics 

 

This table presents the results from a time-series regression of  coefficients on macro variables: 

0 1 1
ˆ   .t t tc c x v 

    

The macro variables (x) are dividend-price ratio of the S&P500 index (D/P), default spread 

(difference between BAA- and AAA-rated bonds, Def), and term spread (difference between 

long-term government bond yield and 3-month Treasury-bill rate, Term). The  coefficients are 

the premia for betas and characteristics. The one-factor/ three-factor/ four-factor model results in 

Panels A/B/C should be compared to the constant premia results in Panels A of Table 4/6/7, 

respectively. We show results only for EIV-bias corrected coefficients and all stocks. The first 

row is the coefficient (multiplied by 100) and the second row is the hetersoskedasticity consistent 

t-statistic. We use the fitted values from these regressions to calculate the contributions to cross-

sectional variation in expected returns made by betas and characteristics. These fractions are 

reported in the last row of each panel (the numbers do not add up to 100 because of covariation) 

with standard errors in parentheses. The sample period is 1946–2011. The sample includes all 

common stocks that have sufficient data to calculate market capitalization and book-to-market 

ratio for at least 5 years (the observations do not have to be continuous). 
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 BMkt Sz B/M Ret6 

Panel A.1: Unconditional betas (zts = ―) 

Cnst 0.381 -0.183 0.332 0.925 

 (2.10) (-6.14) (7.42) (6.41) 

D/P -0.052 0.067 -0.035 0.327 

 (-0.22) (1.65) (-0.64) (2.28) 

Def 0.577 -0.113 0.090 -0.676 

 (3.12) (-3.85) (1.39) (-2.94) 

Term 0.127 -0.060 0.085 -0.292 

 (0.64) (-1.86) (1.81) (-2.14) 

adj-R
2
 1.09 2.99 0.96 3.98 

%Betas= 9.01 (4.69), %Chars= 97.10 (3.97), %Diff= 88.09 (8.37) 

Panel A.2: Conditional betas (zts = Sz, B/M) 

Cnst 0.238 -0.181 0.312 0.969 

 (1.38) (-6.23) (7.33) (7.02) 

D/P 0.078 0.059 -0.016 0.311 

 (0.37) (1.54) (-0.32) (2.22) 

Def 0.443 -0.108 0.062 -0.636 

 (2.02) (-3.83) (1.18) (-3.44) 

Term 0.254 -0.061 0.100 -0.175 

 (1.40) (-1.95) (2.23) (-1.30) 

adj-R
2
 1.00 2.90 0.85 3.29 

%Betas= 10.80 (6.15), %Chars= 94.27 (5.33), %Diff= 83.47 (11.26) 

Panel A.3: Conditional betas (zts = Sz, B/M, Def, Term) 

Cnst 0.053 -0.179 0.287 1.034 

 (0.31) (-6.14) (6.81) (6.46) 

D/P 0.213 0.057 0.017 0.360 

 (1.05) (1.49) (0.34) (2.58) 

Def 0.356 -0.105 0.061 -0.398 

 (1.25) (-3.74) (1.34) (-0.98) 

Term 0.266 -0.063 0.101 -0.044 

 (1.49) (-2.04) (2.27) (-0.32) 

adj-R
2
 0.86 2.79 0.83 0.97 

%Betas= 14.76 (8.19), %Chars= 88.86 (7.57), %Diff= 74.10 (15.60) 
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 BMkt BSMB BHML Sz B/M Ret6 

Panel B.1: Unconditional betas (zts = ―) 

Cnst 1.525 -1.014 -0.736 -0.436 0.374 0.884 

 (7.67) (-8.62) (-6.38) (-15.37) (10.59) (6.85) 

D/P 0.247 0.144 0.263 0.018 -0.041 0.343 

 (1.04) (0.74) (1.42) (0.48) (-1.05) (2.68) 

Def 1.008 -0.282 -0.299 -0.180 0.071 -0.438 

 (3.31) (-2.43) (-1.81) (-5.30) (1.81) (-2.74) 

Term -0.027 0.294 0.409 -0.005 0.031 -0.226 

 (-0.13) (2.43) (2.92) (-0.14) (0.77) (-1.84) 

adj-R
2
 3.10 0.70 1.55 4.54 0.50 2.67 

%Betas= 102.76 (8.61), %Chars= 138.06 (8.36), %Diff= 35.50 (13.25) 

Panel B.2: Conditional betas (zts = Sz, B/M) 

Cnst 0.186 0.222 -0.014 -0.127 0.276 1.076 

 (1.10) (1.96) (-0.13) (-5.60) (8.07) (8.97) 

D/P 0.416 -0.290 0.240 -0.024 -0.108 0.206 

 (2.25) (-1.77) (1.49) (-0.96) (-2.85) (1.70) 

Def 0.353 0.259 -0.069 -0.062 0.086 -0.376 

 (1.48) (2.28) (-0.43) (-2.55) (2.36) (-2.16) 

Term 0.262 -0.045 0.110 -0.080 0.050 -0.180 

 (1.57) (-0.42) (0.92) (-3.06) (1.39) (-1.52) 

adj-R
2
 1.41 0.86 0.21 2.75 2.16 1.79 

%Betas= 36.79 (7.92), %Chars= 63.23 (8.77), %Diff= 26.44 (15.71) 

Panel B.3: Conditional betas (zts = Sz, B/M, Def, Term) 

Cnst 0.046 0.219 0.096 -0.117 0.212 1.239 

 (0.29) (2.11) (0.91) (-5.72) (6.39) (10.33) 

D/P 0.420 -0.270 0.168 -0.016 -0.073 0.285 

 (2.34) (-1.79) (1.08) (-0.72) (-1.94) (2.35) 

Def 0.349 0.336 0.013 -0.026 0.022 -0.252 

 (1.52) (3.16) (0.09) (-1.22) (0.67) (-1.21) 

Term 0.184 -0.099 0.037 -0.082 0.065 -0.117 

 (1.15) (-0.99) (0.34) (-3.63) (1.75) (-1.00) 

adj-R
2
 1.43 1.34 -0.05 2.13 1.02 1.12 

%Betas= 43.80 (6.95), %Chars= 56.47 (7.71), %Diff= 12.67 (13.98) 
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 BMkt BSMB BHML BMOM Sz B/M Ret6 

 Panel C.1: Unconditional betas (zts = ―) 

Cnst 1.855 -1.019 -0.769 0.694 -0.464 0.373 0.851 

 (9.05) (-8.61) (-6.31) (2.62) (-16.95) (10.62) (6.60) 

D/P -0.229 0.193 0.363 -1.026 0.064 -0.072 0.386 

 (-0.94) (1.07) (1.86) (-2.82) (2.17) (-1.90) (3.00) 

Def 1.135 -0.231 -0.309 -0.290 -0.202 0.068 -0.390 

 (4.02) (-1.90) (-1.79) (-0.70) (-5.57) (1.70) (-2.50) 

Term -0.128 0.276 0.370 -0.617 -0.005 0.026 -0.160 

 (-0.58) (2.34) (2.76) (-2.24) (-0.17) (0.68) (-1.30) 

adj-R
2
 3.18 0.56 1.56 2.18 6.43 0.76 2.24 

 

%Betas= 108.21 (9.28), %Chars= 133.72 (9.36), %Diff= 25.51 (13.21) 

 Panel C.2: Conditional betas (zts = Sz, B/M) 

Cnst 0.189 0.246 0.037 0.258 -0.108 0.276 1.253 

 (1.08) (2.16) (0.33) (1.13) (-4.57) (8.11) (7.64) 

D/P 0.403 -0.296 0.208 0.030 -0.015 -0.071 0.094 

 (2.15) (-1.80) (1.33) (0.11) (-0.60) (-2.00) (0.57) 

Def 0.368 0.181 -0.050 -0.330 -0.064 0.055 -0.387 

 (1.51) (1.69) (-0.32) (-1.08) (-2.48) (1.56) (-2.01) 

Term 0.212 -0.119 0.034 -0.311 -0.090 0.053 -0.060 

 (1.25) (-1.14) (0.30) (-1.70) (-3.91) (1.55) (-0.53) 

adj-R
2
 1.21 0.58 0.02 0.26 3.01 1.03 0.41 

 

%Betas= 42.96 (8.04), %Chars= 50.08 (9.72), %Diff= 7.12 (17.09) 

 Panel C.3: Conditional betas (zts = Sz, B/M, Def, Term) 

Cnst 0.069 0.232 0.110 0.274 -0.101 0.230 1.302 

 (0.44) (2.22) (1.08) (1.80) (-5.19) (7.44) (11.63) 

D/P 0.318 -0.262 0.176 0.026 -0.007 -0.042 0.118 

 (1.83) (-1.73) (1.22) (0.13) (-0.33) (-1.28) (1.08) 

Def 0.379 0.311 0.028 -0.432 -0.021 -0.022 -0.132 

 (1.75) (3.14) (0.21) (-1.72) (-1.01) (-0.67) (-0.89) 

Term 0.122 -0.147 0.082 -0.235 -0.089 0.036 -0.071 

 (0.76) (-1.48) (0.79) (-1.50) (-4.43) (1.08) (-0.70) 

adj-R
2
 1.10 1.13 0.06 1.23 2.63 0.13 0.04 

 

%Betas= 55.73 (6.78), %Chars= 39.07 (6.77), %Diff= -16.66 (13.07) 

 

 


