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Abstract 

We characterize an optimal scheme for the sale of multiple identical items by a monopolist in a 

market comprising risk-averse buyers. We establish that a seller may obtain segmentation benefits by 

randomizing prices in one channel while also offering a risk-free alternative in another. The optimal 

vehicle of such randomization is a draw from a discrete two-point probability distribution function. 

We use the model to offer explanations for observed behavior of online sellers and discuss 

implementation issues in recent e-commerce environments. 
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1. Introduction 

In Internet based commerce, sellers often use multiple distribution channels for the sale of 

standard consumer goods. For example, within a two week period, Carnival Cruise Lines offered 

units of the same cabin class on one of its ships in three distinct ways: standard posted prices, 

ascending bid (“English”) auctions and “last minute” clearance sales.   A possible explanation for 

such behavior is that sellers like Carnival are deliberately embedding price uncertainties into their 

sales channels in order to employ second-degree price discrimination among buyers who are risk-

averse.  Buyers who assign higher values to the offered product are typically more reluctant to risk 

compromising their surplus and are therefore prone to purchase at a higher posted price earlier, while 

buyers with lower values may wait and attempt to acquire the product at a bargain price.   

Although we are not aware of any comprehensive field study in this area, there exists much 

anecdotal evidence to suggest that firms collect significant rents by exploiting buyers’ risk aversion. 

Soberman (2003) reports that about half of the operating profit for large consumer electronic chains 

comes from selling extended warranties and that margins on extended warranties exceed 70%. In his 

subsequent analysis, he posits a dual role of warranty contracts in simultaneously signaling high 

quality and screening buyers and then derives the managerial implications of this duality. Similarly, 

new questions have arisen regarding the use of auctions and clearance sales in markets. Under what 

conditions can auctions and random clearance sales serve as effective means of price discrimination? 

What would their potential effects on ordinary posted price sales be? What proportion of unsold 

capacity should sellers optimally offer in clearance sale venues? At what prices? Should a higher 

degree of buyers’ risk aversion result in higher or lower predictability of near future prices? How 

would different levels of available capacity (holding demand fixed at a known level) affect optimal 

pricing policies?  
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This paper provides a simple framework that permits the investigation of these issues. The 

analysis provides insights into the determination of profit-maximizing pricing policies and the 

allocation of available capacity between “risk-free” and “risky” channels. We also attempt to explain 

why the use of multiple distribution channels may be more prevalent in technology-enabled markets.  

Example 

We begin the discussion by introducing a numerical example. A cruise line operator has 400 

cabins left for sale on one of her ships. There are 1000 potential clients in the market whose values 

(�) for the cruise are uniformly and independently distributed between $0 and $1000. Suppose that 

buyers in this market are known to be highly risk-averse; once they set their minds on a specific 

cruise and commit to time away from work they abhor changing their plans.  The seller accordingly 

estimates buyers’ utility to be represented by the function  ���, �� = �� − ��
�  whenever   the net 

surplus from consumption of cruise vacations is non-negative (� − � ≥ 0� . In case a buyer’s does 

not purchase a cruise his utility is assumed to be zero. 

The cruise operator has three possible selling methods: a posted price, a multi-unit online auction 

and a random “last minute” sale event, held with probability of α. The seller may use any 

combination of the three in designing a selling scheme and we assume that all buyers are kept fully 

informed regarding her choice.  

The seller may choose to sell units for a posted price of $700, auction off 15 units with certainty 

and then offer any remaining unit in a clearance sale 14 days before departure, but only with 

probability of α=50% (so that with probability of 50% some capacity may remain unsold).  
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As the optimal solution, we prescribe the following1  

• Set the posted price at $658 per cabin. 

• Announce that a “last minute” sale will take place with a probability of 79%, in which 

units will be sold for $600 each.  

• Do not auction off units at any time. 

In the resulting equilibrium, 303 cabins are sold immediately and 97 cabins are reserved for the 

“last minute” clearance sale. Consequently, the seller’s revenues are $245,720 or about 2.4% higher 

than what she could obtain by charging only a spot price of $600 while selling all 400 available units 

with certainty.  

1.2 Electronic commerce perspectives 

“Before [the Internet], people would try and book early to get a bargain. Now, they will wait until 

the last minute.”  

               Andrew Shelton, senior manager of leisure marketing at British Airways2 

[Figure 1 about here] 

The Internet is facilitating a revolution in day-to-day commerce and has resulted in far-reaching 

changes in consumers’ behavior. In the Travel and Entertainment industry, for example, online buyers 

are typically handling vast information while effectively performing functions that until recently 

belonged exclusively to professional travel agents. The number of people shopping online in this 

sophisticated fashion continues to grow at a rapid rate. Southwest Airways, for example, reports that 

                                                 

 

1 This solution was derived by using equations (45)-(47) in the appendix.  

2Source: New Media Age. “Strategic Play – British Airways: Smooth Flight”, September 2, 2004. 
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in fiscal year 2006 73 percent of its revenue was generated from bookings on southwest.com3 .  

Ryanair, the largest low-cost carrier in Europe, has ceased operating staffed reservation calling 

centers altogether. Consequently, firms such as British Airways are facing tremendous pressures to 

modify their traditional business practices in order to better compete and take advantage of this new 

environment.  

Still, in the market for leisure travel, as well as in others, the development of new online selling 

practices is apparently in its initial stage, and many related managerial issues remain open. In 

particular, it seems that firms are taking different approaches in responding to growing consumer 

demand for online “last minute” transactions. As an illustration of this, Figure 1 depicts pricing data 

sampled from three different airlines’ websites for flights from London to New York.  Similar to the 

pattern shown, we observe that on several occasions American Airlines dramatically dropped airfares 

on its flights about 72 hours before their departure but neither European competitor on the route 

responded by introducing similar discounts in any of its direct sales channels. Some sellers facilitate 

buyers’ access to their “last minute” promotions by advertising them directly on their main websites, 

but comparable firms choose to keep a greater degree of separation between their regular and discount 

channels by partnering with third-party intermediaries4 to offer tickets in auctions or clearance sales. 

In checking such sites, we often fail to find any hypertext link between the company’s main website 

                                                 

 

3 Source: www.southwest.com. 

4 British Airways has partnered with LastMinute.com, which has recently become the largest online travel agency in 

Europe. Royal Caribbean has partnered with Atlantic International Travel in operating the website royalcarib.com, and it 

also makes extensive use of “last minute” specialists such as vacationstogo.com and auction websites such as 

skyauctions.com. 
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and any partners’ discount websites5. Furthermore, in order to discourage later purchases, many 

sellers provide buyers with free insurance against future price reductions. Royal Caribbean, for 

example, has put in place just such a policy, applicable to all published fares within its direct sales 

channels. What could be the reasons for the different approaches taken by similar companies in 

managing their online “risky” channels? We will return to this issue later.  

In view of the many practical implementation issues of price discrimination with random prices6 

we regard information technology as playing a central role for two reasons. First, sellers’ decision 

rules in selecting a pricing policy often involve complex calculations and require accurate and timely 

information regarding demand and unsold capacity level. Second, for profitable segmentation to 

materialize buyers must be afforded easy access and timely information regarding more than one 

channel.  

The Internet has made possible new and more elaborate selling methods that would be difficult to 

implement without computing power, such as multiple-unit auctions [see Pinker et al. (2003)]. 

Moreover, sellers can offer items on a number of web channels at the same time without incurring 

large incremental costs, such as inventory holding costs, for each featured channel.  Novel 

technologies—online inventory and customer data management systems—give sellers a new ability to 

set their prices dynamically over time in order to maximize profits [see Choudhary et al. (2002). In 

                                                 

 

5 Interestingly, this type of seller behavior is observed even in cases where the same seller owns the discount website. 

For example, Dell.com is not linked to DellAuctions.com. 

6 A more precise definition would be “Price discrimination with random prices or availability”.  Throughout the 

paper, however, we model unavailability by the posting of an exceedingly high price.  We explain this further when 

constructing our model in §2.   
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turn, buyers are presumably making some effort to learn the price patterns that are typical for the 

products that they are likely to purchase in the near future.  

The Internet has also reduced buyers search costs significantly [see Bakos (1997)] and new 

questions arise regarding the impact that this may have on sellers’ profitability and competitiveness. 

Clemons et al. (2002) argue that significant price dispersions exist in both commodity and 

differentiated product e-markets. They provide evidence that sellers who use the Internet do not 

necessarily compete on price alone and that many buyers are willing to pay a premium in order to 

purchase a good online from a seller of their choice. In this paper, we provide an argument that the 

reduction in buyers’ search costs may increase sellers’ segmentation benefits by allowing them to 

position items on multiple channels while facilitating buyers’ choices as to the price or sales scheme 

that fits them best.   

As a footnote to this discussion, we wish to stress that although electronic commerce 

considerations were a large part of our motivation, we do not regard the basic economic behavior 

studied in this work as being specific to the Internet.  A car dealer who puts a strict time limit on her 

price offer, an auctioneer who uses a Dutch auction for the sale of flowers, or a department store that 

occasionally displays designer shoes down in its bargain basement are all practicing market 

segmentation with risk. 

1.3 Related literature 

The potential segmentation benefits that may arise from price randomization have long been 

recognized.  Stiglitz (1982) suggests that incentive schemes yielding random outcomes may be 

desirable when agents are risk-averse but does not describe optimal policies that involve such 

randomization. In contrast, Riley and Zeckhauser (1983) show that a deterministic one-price scheme 

is optimal when buyers are risk-neutral and the seller has no capacity constraint.  In two independent 



8 

seminal studies, Matthews (1983) and Maskin and Riley (1984) characterize optimal auctions with 

risk-averse buyers under different sets of assumptions. While assuming, as we do in this paper, that 

buyers have uniform utility functions and differ only in their valuation of the good, both studies 

establish that the seller can devise a truth-revelation mechanism that strictly dominates any one-price 

scheme while inducing an equilibrium in which almost all buyers are faced with risk. With such an 

“optimal auction” every buyer is induced to reveal his value of the good; he is then assigned a 

schedule that includes a “bid submission” fee, a probability of winning the item, and an “acquisition 

price” to be paid only if the item is won. Matthews establishes that the acquisition price of any 

schedule should optimally be deterministic when buyers exhibit constant absolute risk aversion 

(CARA). Maskin and Riley deviate from this rather restrictive assumption at the cost of not obtaining 

necessary and sufficient conditions for the optimality of their suggested mechanism.  Furthermore, it 

appears that the main barrier to the implementation of mechanisms resembling such “optimal 

auctions” in real-world markets is their inherent complexity. In fact, to the best of our knowledge no 

such selling scheme has ever been used. 

Varian (1980) explains price dispersions in markets in which multiple sellers compete for sales of 

a homogenous good. He argues that when buyers differ in their ability to access price information the 

optimal selling scheme involves price randomization as the unique symmetric equilibrium outcome. 

The motivation behind such randomization is the desirability of avoiding head-on Bertrand 

competition.  Baye and Morgan (2001) extend this model to include a monopolistic electronic 

intermediary that facilitates the transmission of price information while charging participating sellers 

and buyers nominal access fees.  Interestingly, they find that at the resulting equilibrium, a seller’s 

decision to participate in the electronic market takes the shape of a random event with probability α 

while its advertised price is a random variable drawn from a continuous distribution F(p). Both papers 
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are concerned with an oligopolistic environment. We, however, consider a monopoly seller, and our 

paper is therefore an alternative exploration of the problem of characterizing optimal price 

randomization schemes. 

Price uncertainty can be thought of as being but one type of non-pecuniary cost that buyers may 

incur upon selecting a channel.  Relevant references can therefore be found within a much wider 

range of optimal screening literature, which deals with the considerations of one or more sellers 

facing a heterogeneous population of buyers. Mussa and Rosen (1978) analyze the case in which all 

consumers agree on some ordinal ranking of product qualities but differ in their willingness to pay for 

higher-quality products. Several later research papers investigate optimal vertical differentiation 

policies to be used by a monopolist in such settings. Deneckere and McAfee (1996), for example, 

show that even when it is costly to reduce the quality of a good, a monopolist may actually choose to 

do so (or, in their language, “damage” the goods) in order to obtain screening benefits. Another strand 

of relevant literature (see, e.g., Gerstner and Holthausen (1986)) is concerned with cases in which 

price discrimination through channel is achieved by imposing inefficient time and effort participation 

requirements on buyers. An obvious example of that is the commonplace use of coupons and rebates 

in various product markets.  

In what follows we analyze a simple two-period model of segmentation with random prices. We 

assume a specific utility function and only two possible available pricing schemes: a “risk-free” 

channel which consists of a single posted price, and a “risky” channel in which price is a random 

variable drawn from a probability distribution. We do not impose any restrictions on the shape of this 

distribution. Within this framework, we are able to fully characterize the profit-maximizing policy 

and investigate its behavior under different degrees of risk aversion among buyers and different levels 

of available capacity for the seller. We show that when the seller’s available capacity is unlimited and 
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buyers exhibit strict risk aversion, the optimal vehicle of price randomization is a discrete two-point 

distribution. In contrast, when buyers are risk-neutral or when the seller’s available capacity falls 

below a threshold that is a concave function of the degree of buyers’ relative risk aversion, the 

optimal policy is a one-price scheme.   

One of our main findings is that a higher degree of risk aversion influences the monopolist to 

direct a higher proportion of available capacity to random price sales. At the same time, the seller 

reduces the effective risk involved in transacting through this channel (e.g., increases the frequency of 

sale events as well as the expected discounts).  With increased risk aversion, buyers with the highest 

values are more reluctant to forgo a risk-free purchase and potentially compromise their exercisable 

surplus.  Hence, the posted price is increased to reflect the higher “insurance premium” that those 

buyers are willing to pay. As a result, the market for posted price sales becomes smaller and a portion 

of available capacity is untied. In turn, this merchandise is targeted toward buyers with lower values 

through the use of the random price venue.  Since the monopoly may gain nothing by inflicting 

further transaction risk on buyers with the lowest values, and at the same time a smaller degree of 

price uncertainty is sufficient to prevent leakage from the highest segments of the market, the risks 

embedded in the selling mechanism are mitigated as capacity allocation tilts in favor of random price 

sales. 

The remainder of the paper is organized as follows. In §2 we construct the basic (uncapacitated) 

model and analyze the resulting equilibrium (Theorems 1 and 2). Section 3 includes three extensions 

to the basic model. In the first, the monopolist has less than full control over the design of the selling 

mechanism.  In the second, an arbitrary number of risk-neutral re-sellers compete with the monopolist 

in the retail market. The third extension entails the addition of a capacity constraint to the model 

(resulting in Theorems 3 and 4). In §4, we discuss some welfare implications of both uncapacitated 
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and capacitated models. In §5 we derive the managerial implications of the model and offer some 

additional concluding remarks. 

 

2. Model  

We consider the problem of a risk-neutral seller who wishes to maximize her expected revenue 

from the sale of multiple units of a good. The seller is a monopolist and we normalize her constant 

marginal cost of production to be zero. For this part of the analysis, we also assume that the seller’s 

production capacity is unlimited.  

Suppose the seller initially offers the good at a price p1. If potential demand and production 

capacity are not totally exhausted, it pays for the seller to continue and then offer additional units at a 

lower price p2, targeting potential buyers that have so far chosen not to buy at p1. Since buyers 

understand this, they anticipate the subsequent discount, and optimally wait for it. In the absence of a 

time deadline, similar considerations apply indefinitely. The seller's power to attain strictly positive 

profits (inducing potential customers to buy at a non-infinitesimal positive price) depends on the 

possibility of a commitment, whereby some potentially profitable future decisions are inhibited. The 

ex-post opportunity loss (which appears to violate subgame perfection) is amply justified by the ex-

ante profitability of the initial commitment. 

With any non-degenerate pure strategy, all sales take place at the same time period. Recognizing 

the possibility (indeed inevitability) of commitment, we consider an alternative "two-period" selling 

strategy that involves randomization. In the first period, the seller offers the good for sale at some 
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posted per unit price �� ; in the second period, the price ��  is a random draw from a discrete 7 

probability distribution ���, ��. The term � = {��}����  is a vector of � non-negative prices that are 

indexed in an increasing order (� < � → �� ≤ ��), and � = { �}����  is a vector of n probabilities such 

that Pr[�� = ��] = %� for all {� = 1,2, . . , �}, and ∑ %� ≤ 1���� .  

Using the above terms, we let the triplet * = {��, �, �} represent the seller’s “pricing policy”. The 

seller announces the policy * at the beginning of the first period and we assume that she can indeed 

credibly commit to truthfully following it. 

The market comprises a large number of buyers whose values for the good are independently and 

uniformly distributed over an interval of a unit measure ��~,[0,1]. Each buyer’s demand is for a 

single unit of the good. Buyers are risk-averse and their preferences are uniformly represented by the 

utility function ����, �� = ��� , ���-. . The parameter /  is common to all buyers and may range 

between 0 and 1; in related literature, this term is often referred to as the degree of buyers’ relative 

risk aversion8.   

At the beginning of the first period, all buyers freely observe the policy *. Each buyer then 

individually chooses whether to purchase the good at a price of �� or delay his decision until the next 

period. In the second period, the realization of the random variable �� becomes known and all buyers 

                                                 

 

7 Although we consider only discrete price distributions, any interesting continuous distribution 

can be approximated by a discrete form, so no generality is lost.  

 

8 For a utility function u(y) the degree of relative risk aversion is defined by )('/)('' yuyyurR −= .  
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whose values exceed this price make their purchases. At the same time, buyers with values lower than 

�� end up with no purchase and with a utility of zero. 

2.1 Buyers’ behavior  

A buyer whose value is v will optimally purchase the good in the first period if and only if the 

following two conditions are satisfied  

 � ≥ ��. (1)  

 0��� = �� − ����-. − 1 %��� − ����-. ≥ 02�3�
��� . (2)  

Where 4��� is the index of the highest price not exceeding �. The function 0��� represents a 

buyer’s excess utility from a risk-free purchase. It can be shown that 0��� is everywhere continuous 

with respect to buyers’ value but is not always monotone with respect to it. The following lemma 

offers an important necessary condition for “risky” channel participation. 

Lemma 1:  A buyer will delay his purchase in the first period only if he expects an (average) 

price discount to materialize in the second:0��� ≤ 0 → �� ≥ ∑ %������� , all � ∊ [��, 1].  
All proofs in this paper are contained in the appendix. Lemma 1 seems intuitive. We learn from it 

that even though positive probabilities may be assigned to second period prices that are higher than 

the first period posted price (��), the average revenue generated to the seller by any second period 

buyer would always be lower than that of a first period buyer.  

In the next sub-section, we study the family of policies that include a two-point price distribution 

in the second stage (� = 2). Narrowing this subset even further, we restrict one of those prices to be 

sufficiently high that no buyer will be willing to pay it.  This form is of special importance, as we 

show at the next section that the seller can always find an optimal policy that belongs to it.  

2.2 The “two-price” policy form  
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Consider a situation in which the seller posts in the first period a “spot” price of p1 and announces 

at the same time that with probability % she will hold a random “sale” in the second period, and that 

the “sale” price will be ��. If she does not hold a “sale” the seller will not sell the product in the 

second period at all.  

This takes the form of the following policy     

* = {��, �, �} , � = {��, ℎ} , � = {%, 1 − %} , �� ≥ �� , 0 ≤ % ≤ 1. 
where ℎ is any number (weakly) greater than 1, which is the highest possible value a buyer can 

assume in our model. Throughout the paper we shall use the convention ℎ = 1.  In this particular 

case, it can be shown that the buyers’ excess utility from risk-free purchase 0��� is a monotonically 

increasing function with respect to � for any parameter value and therefore has, at most, a single 

crossing at a level of  zero.  This threshold value can therefore assume a functional form  

 7 = 8���, ��, %, /� = min <�� − % ��-.��1 − % ��-. , 1= . (3)  

All buyers with values higher than 7 optimally make purchases in the first period and all buyers 

with values between �� and 7 make purchases in the second period whenever a “sale” is held. Quite 

expectedly, the function 8  is monotonically increasing with respect to both ��  and %  and 

monotonically decreasing with respect to both �� and /.  

2.3 The seller’s behavior and the characterization of a profit-maximizing policy 

The seller’s aim is to select a policy in order to maximize her expected profits when all buyers are 

kept fully informed and behave rationally. Without any loss of generality, we restrict our attention to 

the domain >�/� of policies that induce a partition of buyers into first and second demand sets that 
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are contiguous and touching at a single point 7 = 8�*; /�. Hence, if a buyer prefers to make his 

purchase in the first period, then so will all buyers with values higher than his.9 

To save on notations we use simply > and 7. The seller’s optimization problem takes the form 

 maxB∊C ���1 − 7� + 1 %��7 − �����
2�E�
��� . (4)  

Before proceeding to the solution, we provide a simple example in order to illustrate the 

considerations involved in the seller’s selection of a policy. For this example, suppose that the seller 

compares only the following two policy alternatives: 

*� = F12 , {0}, {0}G. 
*� = F23 , I13 , 1J , I12 , 12JG. 

We shall refer to *� as “the benchmark policy’”. This is the optimal one-price policy by which the 

seller may turn a profit of 
�K simply by charging a fixed price of 

�� in a single period. The first period 

demand resulting from policy *�  is given by �1 − 7� , where 7  is described by equation (3); the 

second period demand is accordingly 
�� �7 − �L� and the overall profit from this strategy is given by  

M�*�� = 5 ∙ 2 ��-. − 818 ∙ Q2 ��-. − 1R. 
The profit function above is monotonically increasing in the degree of buyers’ risk aversion and 

exceeds the benchmark profit if and only if / is greater than 0.644.  Figure 2 assists us in describing 

                                                 

 

9 As mentioned in the previous section, this type of equilibrium is induced by all two-price policies.  
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the different effects that come into play in the comparison between the alternative equilibria under 

policies *� and *�. In segment I, using policy *� provides better surplus extraction. At the same time, 

the seller loses revenues from buyers whose values fall within segment II due to cannibalization (or 

leakage). In segment III the seller benefits from extending her market to include new buyers with 

lower values.  The key challenge is identifying a policy that yields an overall increase in profits as the 

sum result of all three effects. 

[Figure 2 about here] 

 Our first Theorem asserts that when buyers are risk-neutral the seller cannot achieve a profitable 

segmentation.  

Theorem 1:   Let buyers be uniformly risk-neutral (/ = 0) and let *S = ��̂�, �U, %U� be a policy that 

induces a non-empty subset of buyers to make purchases in the first period.  Then,  

MV*SW ≤ �̂��1 − �̂��.   

Surprisingly, we find that the fact that introducing a random second period price is never optimal 

does not depend on the optimality of the first period price in a policy. Our next task is to show how 

buyers’ risk aversion may change the nature of the seller’s solution. Intuitively, a sufficiently high 

degree of risk aversion may mitigate the negative effects of cannibalization to such an extent that the 

seller can exploit price uncertainty in order to increase her profit.  In fact, we find that for any degree 

of risk aversion the seller can indeed find an optimal two-price policy that results in a higher profit 

than the fixed-price benchmark. We now formalize our main result.  

Theorem 2:   For any degree of strict risk aversion (0 < / < 1) there exists a profit-maximizing 

policy *∗�/� = {��∗�/�, �∗�/�, %∗�/�}  that involves two distinct second period prices �∗�/� =
{���/�, 1}to be charged with two corresponding strictly positive probabilities  ∗�/� = {%�/�, 1 −
%�/�}. This optimal policy strictly dominates any one-price scheme �M�*∗� > �K�.  
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A central implication of Theorem 2 is that the optimal vehicle of price randomization within a 

two-channel structure is a draw from a discrete two-point probability distribution function where one 

of the points represents a price that is prohibitively high.10  

2.4  Comparative Statics 

In this section we describe the effects of changes in the degree of buyers’ risk aversion on various 

equilibrium variables of the model.  Equations (5) and (6)11 formulate the two prices of the profit-

maximizing policy: 

 

��∗ = 2 Z1 − �%∗� ��-.[
4 − %∗ Q1 + �%∗� .�-.R�. (5)  

 

��∗ = Q1 + �%∗� .�-.R Z1 − �%∗� ��-.[
4 − %∗ Q1 + �%∗� .�-.R� . (6)  

where the probability %∗ is determined as the unique feasible solution to the following equation  

 Z%�].�-. + % ��-.[ Q /1 − /R − % .�-. Q1 + /1 − /R + 1 = 0. (7)  

We use the above derivations to investigate the relationship between the buyers’ risk aversion and 

the seller’s optimal policy variables (see Figures 3A and 3B).   

[Figure 3 about here] 

It is an intuitive result that the first period price is strictly increasing with risk aversion (see Figure 

3A); the buyers’ increased reluctance to incur price uncertainty intensifies the demand for purchases 

                                                 

 

10 We have not been able to find a strong economic intuition behind this result. 

11 These are derived in the appendix as part of the proof of Theorem 2, 
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in the first period and results in a correspondingly higher posted price (��∗). At the same time, the 

“sale” price (��∗) of the second period is a decreasing function of buyers’ risk aversion since a reduced 

cannibalization effect allows the seller to charge a price that is closer to the ex post efficient level 

given by 
^�B∗;.��  (this is the price that the seller would charge in the second period if she were to defect 

from truthfully following her declared policy).  Interestingly, the optimal probability of a “sale” (%∗) 

is monotonically increasing with risk aversion (see Figure 3B). In other words, in environments 

where buyers would be more reluctant to incur transaction risk the model advocates installing 

mechanisms that assign higher probabilities to lower prices. Still, as Figure 3C shows, with increased 

risk the ratio of average sales in the two periods always tilts in favor of the second period channel (!).  

We later generalize this result in our Theorem 4 to include also a binding capacity constraint. Finally, 

it is an obvious result that the monopoly’s payoff increases monotonically with risk aversion (see 

Figure 3D). This phenomenon is a direct consequence of the monopoly’s enhanced capacity to 

segment its market. 

 

3. Model Extensions 

3.1 Optimal policies with exogenous risk 

Theorem 2 asserts that a monopolist can always find a profitable segmentation scheme in a market 

comprising (strictly) risk-averse buyers. In this section, we argue that this fundamental result can be 

generalized to include a case in which the probability % is not optimally set (we refer to this as 

“exogenous risk”). With this model, we attempt to get a flavor of optimal behavior when a seller 

considers using a sub-optimal mechanism for some reason, as when a third-party retailer controls the 

probability of a “sale” but the wholesaler still maintains control over prices and supply quantities.  
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In the following corollary we use the framework developed so far in order to argue that for any 

exogenously given 0 < % < 1 there exists a pair of prices ��and �� such that the resulting two-price 

policy strictly dominates any one-price scheme.   

Corollary (Theorem 2):   Let % and / both be arbitrary parameters between 0 and 1. Then, the 

policy *∗�/� = _��∗�/, %�, {��∗�/, %�, 1}, {%, 1 − %}` with ��∗�/, %� and ��∗�/, %�given by equations (5) 

and (6) respectively, is optimal. 

This result stems directly from the proof of Theorem 2. We follow with a short discussion of 

related comparative statics. Figure 4 may be regarded as an abstract view of the optimal design of a 

dual channel that comprises a spot and a random price.  In that sense, scenarios in which % is closer to 

zero may better represent mechanisms that are “riskier” from the buyers’ standpoint. We find that the 

difference between the two channel prices is a decreasing function of the parameter %. The “sale” 

price (��) is monotonically increasing, but the shape of the optimal posted price (��) as a function of 

α is unimodal, and its mode %∗ corresponds to the point of maximal profits (note that the optimum 

value in Theorem 2 can be expressed as M�*∗� = ��∗/2). When % is high (and known to buyers), the 

perceived risk of delaying purchases to the second period is correspondingly low, so the 

cannibalization effect renders large deviations from period prices of 
�� unprofitable. When % is very 

low (i.e., the mechanism is “highly risky”) the seller may capture only a small fraction of the surplus 

of buyers who are still willing to defer their purchases. The impact of the second period sale on total 

revenues becomes marginal and segmentation benefits do not justify large deviations from a first 

period price of 
�� .  At the point %∗ , which is always in the interior, the tradeoff between 

cannibalization and extraction efficiency results in the maximum possible profit. 

[Figure 4 about here] 
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Next, we investigate the optimal allocation of capacity between spot and random price channels. 

Figure 5 shows total average sales and their corresponding decompositions into each of the two 

channels.  Interestingly, we learn that optimal seller behavior entails assigning a higher proportion of 

the total sales capacity to the second period sales channel whenever the transaction risk involved in it 

is lower. From the channel designer’s point of view, it should be noted that analyzing the 

performance of each channel separately within the two-channel structure might be misleading. As is 

apparent from the figure, the fact that the second period revenues are monotonically increasing with 

respect to % does not suggest that any transaction risk present in a distribution channel should be 

mitigated or eliminated in all circumstances.  

[Figure 5 about here] 

3.2 Third-party re-sellers  

In the preceding analysis we assumed that the seller is not only the monopoly producer of the 

good but also the only risk-neutral agent in the market. We now consider an alternative case in which 

an arbitrary number of risk-neutral re-sellers also exist in the market. The re-sellers are not authorized 

by the wholesaler and are therefore compelled to buy the good at a forward retail price in the hope of 

selling it later at a profit once it appreciates. We assume that no re-seller derives any direct utility 

from consumption of the good. We also ignore some implications, such as lack of warranty, and 

assume that all buyers are indifferent between buying from the monopoly producer and buying from a 

re-seller. Would it be possible for any number of such re-sellers to gain arbitrage profits in the 

market? The answer to this question is negative, as we show. 

In a realization in which the producer does not hold a “sale” let us assume that all re-sellers 

charge the price b in a symmetric equilibrium.  Each re-seller’s expected (per unit) profit is then 

given by 
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 Mcd�b� = �1 − %�b + %�� − ��. (8)  

The minimum equilibrium price b  that would result in a non-negative profit for a re-seller 

Therefore is  

 b2�� = �� − %��1 − % . (9)  

However, since the utility function of buyers is concave, it is straightforward to verify that no 

buyer will be willing to buy at this price. Indeed, by the definition of strict concavity we get 

 %�� − ����-. + �1 − %��� − b2����-. < �� − ����-.. (10) 

We conclude that the monopoly’s capacity to segment the market with risk profitably may not be 

impaired by the presence of risk-neutral re-sellers. 

3.3 Limited capacity   

We now incorporate a capacity constraint into the model and analyze the resulting equilibrium. 

We show that when merchandise is in short supply relative to demand, the seller optimally should 

charge only one price.  

We assume that buyers freely observe the seller’s available production capacity (denoted e) in the 

first period. The entire lot is readily available for sale in the first period, and the seller can costlessly 

carry over any unsold unit to the second period.  We do not model “stock outs”; that is, we assume 

that within any chosen policy the seller does not assign positive probabilities to scenarios in which 

demand exceeds supply.  Hence, the minimum price that may be charged at any equilibrium is (1 −
e).  We obtain the following result: 

Theorem 3:   Let / be the degree of buyers’ relative risk aversion (0 < / < 1� and let e be the 

seller’s overall (two period) available capacity (0 ≤ e ≤ 1). There exists a profit-maximizing policy 

*∗�/, e� = {��∗�/, e�, �∗�/, e�,  ∗�/, e�}  that involves two second period prices �∗�/, e� =
{��∗�/, e�, 1}  and two corresponding probabilities  ∗�/, e� = {%�/, e�, 1 − %�/, e�}  and strictly 
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dominates any one-price charge, if and only if buyers are risk-averse (/ > 0) and the seller’s 

capacity  exceeds a concave threshold function: e > �-.�-.. 

Figure 6 depicts the two regions of Theorem 3. When production capacity is limited the seller 

targets buyers with higher values for the good and has little or no incentive to use segmentation tools 

in order to include buyers with relatively low values. Both effects result in optimal channeling of a 

smaller proportion of available capacity to the second period, or even the elimination of second 

period sales when capacity is low.   

[Figure 6 about here] 

The optimal policy under capacity constraints is described in the proof of Theorem 3, in the 

appendix. We use this solution to establish the following result 

Theorem 4:   For any given level of available capacity (e), an increased degree of buyers’ risk 

aversion will result in optimal allocation of a higher proportion of e  to second period (“risky 

channel”) sales.      

Theorem 4 is somewhat counter-intuitive. We often observe in consumer markets that a seller 

reacts to buyers’ shifting preferences by modifying the product in the same direction as this change in 

preferences. In Theorem 4, however, we establish the opposite; when buyers are generally more 

reluctant to incur transaction risk the seller optimally involves such risk in the sale of more units.  

 

4. Welfare implications 

We define total welfare as the aggregation of net expected consumer surplus and the seller’s 

equilibrium profit: f = g* + h . Under the optimal two-price policy of both uncapacitated and 

capacitated cases, we calculate the equilibrium values of total welfare as the sum of the following two 

arguments  
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g* = �1 − ���� − �1 − %��7 − ����2   �i 

h = �1 − ����� + %�7 − �����. 
Since we assume zero marginal costs of production, whether equilibrium social welfare increases 

or decreases when compared to a one-price monopoly benchmark depends entirely on the level of 

production. When available capacity is unlimited, the total social welfare always increases as a result 

of increased production. When the capacity constraint is binding in equilibrium, however, social 

welfare may decrease. A less intuitive result pertains to the welfare of consumers as a whole. We find 

that regardless of risk aversion and available capacity levels consumers are always worse off in the 

aggregate than they are in the one-price monopoly scenario. This result holds in an even stronger 

sense because the above formulation of consumers’ surplus does not incorporate buyers’ disutility 

from bearing risk. Notably, an incremental increase in the population’s risk aversion has opposite 

effects on different buyer groups. Buyers with the highest values, who would typically commit to a 

risk-free purchase, are hurt as a result of the consequent increase in first period price, but buyers with 

lower values, who would typically prefer to delay their purchase to the second period, are better off 

because increased risk aversion entails a lower second period “sale” price or a higher frequency of 

sales at the new equilibrium. 

 

5. Concluding remarks 

Our primary conclusion is that firms with monopoly power can increase their profits by using 

price randomization whenever buyers are risk-averse and available sales capacity is not in severe 

shortage relative to expected demand. In cases when such a potential existed, we described optimal 

pricing and capacity allocation between “risk-free” and “risky” channels to be taken by a seller in 

exploiting it. The characterization of such profit-maximizing policies proved a fairly complicated 



24 

matter even within the simplified framework used; more so, it undoubtedly constitutes a significant 

challenge in real market settings.  The dynamic nature and rapid growth of new electronic markets 

underscore the importance of a better understanding of related issues and warrant the development of 

further theoretical foundations.     

 Two managerial implications of the model are worth emphasizing. The first one is that a 

monopoly seller should mitigate the extent of risk involved in the selling mechanism in response to 

increased buyers’ risk aversion. Within the optimal two-price policy form resulting from the analysis, 

such mitigation translates to an increase in the frequency of “last minute” sales. In most product 

markets, however, controlling for buyers’ risk by altering the frequency of sales may lack immediate 

effectiveness since an extended time may elapse before most buyers learn of the change and 

internalize it in their purchasing behavior. In settings with incomplete information, an alternative 

practical approach for sales-channel risk management can also be found in the dissemination of 

different amounts of information by the seller (extant literature relates to this area see, e.g., Milgrom 

& Weber (1982)). For example, priceline.com often reveals prior winning bids to potential 

participants in its auctions.          

A second practical implication of the model is that when risk aversion is held at any constant 

level, and the frequency of clearance sales is exogenously determined, the seller should optimally 

channel higher volume through the second period (“risky”) channel whenever this frequency is higher 

(see Figure 5). Simply put, an optimal policy entails the equilibrium allocation of fewer transactions 

to a “riskier” channel within a multi-channel selling scheme. Interestingly, this effect may result in an 

agency problem when an outside retailer is contracted to carry out “last minute” transactions. 

Although a global (two-channel) profit-maximizing policy often involves some non-trivial desirable 

extent of risk to be installed in the selling mechanism, a contracted retailer will unambiguously have 
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an incentive to unilaterally mitigate this risk thus augmenting her channel’s revenue share and 

resulting commissions. Since the potential benefits from such deviations are more substantial when 

the degree of optimal mechanism riskiness is relatively high (corresponding to relatively low degrees 

of buyers’ risk aversion), we expect such outsourcing to be more prevalent in markets comprising 

highly risk-averse buyers. 

In our opening remarks we observed that Carnival Cruise Lines facilitated buyers’ participation in 

“last minute” transactions, but a comparable firm, Royal Caribbean, seemed to have actively 

discouraged such speculative behavior. We can use the framework developed here to discuss possible 

reasons for this. Our model predicts that the effect of both a higher degree of buyers’ risk aversion 

and a greater extent of excess capacity will result in an increased segmentation potential from using a 

two-channel scheme, and can thus render the use of “risky” sales more attractive for a seller. In this 

case, however, we doubt that substantial differences in risk aversion existed between the populations 

of buyers, as both cruise lines operated in same regional markets and offered comparable product 

mixes. Unfortunately, with respect to observed differences in demands and capacity for the two cruise 

lines, we find that the predictions of the model conflict with the actual sellers’ behavior. Pertinent 

financial data reported 12  clearly indicate that Carnival experienced a stronger demand for cruise 

tickets than Royal Caribbean did yet Carnival apparently used the “risky” channel more extensively.  

                                                 

 

12 We extracted financial data from the Carnival Corporation and Royal Caribbean Cruises Ltd. 2003 annual reports. 

Capacity utilization rates were 103.4% for Carnival and 103.2% for Royal Caribbean. Passenger capacity is 

calculated based on two passengers per cabin. Revenues from passenger tickets per Available Lower Deck Berth Day  

(ALBD). The figures were $151.27 and $142.69 per ALBD for Carnival and Royal Caribbean, respectively. Product 

quality or brand perception differences cannot, in our opinion, explain the yield differences in this case.  
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 Our model indicates that Royal Caribbean would likely have improved its profitability by 

emulating Carnival’s more direct “last minute” selling approach. A direct comparison of key financial 

performance measures13 pertaining to the efficacy of overall yield management for the two companies 

lends this further support. It should be noted, however, that considerations that were left outside the 

scope of our discussion might give rise to opposing arguments. For example, it is possible that Royal 

Caribbean’s management aimed to achieve a completely different sort of price discrimination by 

targeting only well-informed buyers for the marketing of special promotions (for analyses of this type 

of seller’s behavior see, e.g., Salop and Stiglitz (1977), Varian (1980), Baye and Morgan (2001)). 

Further research is required in order to determine more clearly under what circumstances either type 

of segmentation should be preferred.  

Another limitation of our model is that we consider a monopoly setting and thus ignore the impact 

of strategic interactions in a competitive environment. It is quite possible that competition will 

dramatically reduce the benefits of segmentation, as deliberately imposing transaction risk on buyers 

may lead to an unsustainable equilibrium outcome. In markets that possess a relatively low degree of 

horizontal differentiation, we expect that buyers will tend to purchase a close substitute when their 

most preferred product is unavailable or its price is deemed too high. Incorporation of different 

transaction costs for buyers or different venue costs for the seller, nonlinear production cost functions, 

endogenous product qualities, and stochastic demand and supply could also contribute significantly to 

this discussion. We leave those interesting issues as topics for future research.   

                                                 

 

13 The Carnival Corporation achieved a 4.94% rate of return on its assets (pro-forma data) and an 8.77% return on 

shareholders’ equity (on a diluted basis); the comparable Royal Caribbean Cruises Ltd. figures were 2.47% and 6.58%, 

respectively. 
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Appendix: Proofs 

Lemma 1:    The utility function is concave and monotonically increasing with respect to value. 

Hence, 0��� < 0 implies 
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 0 > �� − ����-. − 1 %��� − ����-. ≥ �� − ����-. −2�3�
��� < 1 %��� − ���2�3�

��� =�-.

≥ �� − ����-. − <� − 1 %���
2�3�
��� =�-.. 

(11) 

Therefore, �� > ∑ %���2�3���� . □  

Theorem 1:   The set of equilibrium first period buyers is non-empty. If the set of equilibrium 

second period buyers is empty then the assertion of the theorem is trivially satisfied. Let us assume, 

then, that the set of second-period buyers also is non-empty. The function 0��� given in equation (2) 

is continuous and its domain a closed interval; under the risk-neutrality assumption it is also 

monotonically increasing. Hence, by the mean value theorem there exists a unique value 7 ∊ �0,1� 

such that 0�7� = 0. The seller’s profit function is  

 MV*SW = �̂��1 − 7� + 1 %U��7 − �U���U�
2�E�
��� . (12) 

By the incentive constraint of the indifferent buyer (whose value is 7), we obtain 

 �̂� = <1 − 1 %U�
2�E�
��� = 7 + 1 %U�

2�E�
��� �U� . (13) 

For notational convenience we use the cumulative distribution form j�7� ≡ ∑ %U�2�E���� . With this 

term, we describe the following revenue equivalent policy *l: 
*l = {�̂�, �m, �l};      �m = _�l�, �l�, … , �l2�E�]�` = _�U�, �U�, … , �U2�E�, 7`,  

�l = _%m�, %m�, … , %m2�E�]�` = _%U�, %U�, … , %U2�E�, 1 − j�7�`. 
It is easy to verify that M�*l� = M�*S�. 
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We show that the variance of the second period price, within the equilibrium induced by the 

optimal policy, must be zero. Note that by equation (13) the first period price equals the second 

period mean. The required variance term is formulated as follows: 

 o� ≡ p[��l� − �̂���] = V1 − j�7�W�7 − �̂��� + 1 %m���l� − �̂���2�E�
���

= V1 − j�7�W7� − ��� + 1 %m���l���2�E�
��� . 

(14) 

Equations (13) and (14) yield the following expressions, respectively:  

 1 %m�
2�E�
��� �l� = �̂� − V1 − j�7�W7. (15) 

 1 %m���l���2�E�
��� = o� + �̂�� − V1 − j�7�W7�. (16) 

Once we incorporate the expressions for the LHS terms in (15) and (16) into the profit function 

(12), we get our required result: 

 MV*SW = �1 − �̂���̂� − o�. (17) 

From the non-negativity of the above variance term we know that the policy *S is dominated by a 

policy where only one price �̂� is charged, and our proof is thus complete. Note that we proved more 

than the Theorem asserted: not only does the seller’s optimal policy consist of a single fixed price, but 

the profit function also is monotonically decreasing in the measure of second-period price variability 

(o�).□ 

 

Theorem 2:   We first show that for any / > 0  there exists a two-price policy *  such that 

M�*� > �K and then argue that there does not exist an �-price policy that strictly dominates it. Let 
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* = {��, �, �} with � = {��, 1} and � = {%, 1 − %} represent an arbitrary two-price policy. Suppose 

that there exists a buyer in the market who is indifferent between a first and a second period purchase. 

Then, as we argued in §2.1, his value is given by 

 7 = 8�*� = �� − % ��-.��1 − % ��-. . (18) 

 

Next, we incorporate this term into the profit function given in equation (4). For feasibility, we 

impose the restriction that 7 must lie between �� and 1 (constraint (19.2) forth). We have in hand the 

formulation of the seller’s problem: 

 maxq
,qr,s �� <1 − �� − % ��-.��1 − % ��-. = + %�� <�� − % ��-.��1 − % ��-. − ��=. (19) 

s.t.: 

 �� − �� ≥ 0. (19.1) 

 �� + % ��-.�1 − ��� − 1 ≤ 0. (19.2) 

 ��, ��, % ∊ [0,1]. (19.3) 

Fortunately, we find that whenever / > 0  none of the above-listed constraints bind at any 

optimum so we ignore them in what follows.  

First-order necessary conditions: 

 tM�∙�t�� = 1 − 2�� + �� Z% + % ��-.[ − % ��-.
1 − % ��-. = 0. (20) 

 tM�∙�t�� = �� Z% + % ��-.[ − 2��%
1 − % ��-. = 0. (21) 
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 tM�∙�t% = ��� − ��� u��% ��-. − �� Z%�1 − /� + /%�-.�-.[v
% Z1 − % ��-.[� �1 − /� = 0. (22) 

The case when % = 1 is of no significance in the model, so we can ignore the first terms on the 

right-hand sides of equations (20), (21), and (22). By combining equations (20) and (21), we get  

 

��∗ = 2 Z1 − % ��-.[
4 − % Q1 + % .�-.R�    �i  (23) 

 

��∗ = Z1 − % ��-.[ Q1 + % .�-.R
4 − % Q1 + % .�-.R� . (24) 

From equations (22),(23) and (24) we derive the following condition for α: 

 Z% ��-. + %�].�-.[ Q /1 − /R − % .�-. Q1 + /1 − /R + 1 = 0. (25) 

Equation (25) does not have a closed-form solution so we use numerical methods to solve for %∗. 

Note that by equations (23) and (24) the entire optimal policy is uniquely determined by this value.  

Still we must verify that the numerical solution is indeed a global maximizer. We obtain the 

representation of profits under the hypothetical case in which % is treated as a parameter: 

 

M∗�%� = Z1 − % ��-.[
4 − % Q1 + % .�-.R�. (26) 

This is a continuous and strictly concave function. Hence, we find the extreme point to be a global 

solution to the seller’s problem, as required. Since it is true that limx→y M∗�%� = limx→� M∗�%� = �K , 
the mode of maximum profit is always found at an interior point of the support (0 < %∗ < 1). The 
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reader may refer to Figure 5 in the paper’s text for an illustration of this. The Theorem’s assertion that 

M∗�%� > �K for any / > 0 is thus proven. 

It remains to be verified that there does not exist another policy *� that includes an �-point second 

period price distribution (� ≥ 3) and yields the seller a (strictly) higher payoff than the optimal two-

point distribution we analyzed above does. Let: 

 *� = { ��,� �,� �};   � = { ��}������  , � = { %�}������  , � ≥ 3.   �  

and assume the contrary—that is, *�is the profit-maximizing policy. Policy *� with � ≥ 3 may 

result in more than one indifference point 7 . We pick 7 = 8�*�� = min3��|0��� = 0�  and by 

Lemma 1 get the following upper bound for equilibrium profits corresponding to *�: 

 M�*�� = V1 − 7W�1 + 1 %�V7 − ��W��.2�E�
���  (27) 

Let us suppose for a moment that the seller, while making her policy decision, optimistically 

assumes that her payoff will be M�*��. Since *�is supposed to maximize the seller’s payoff, it must in 

particular dominate any policy *  such that �� ∊ *, �� = ��� Sp ∈1 , and 7 = 8�*� = 8�*�� . We 

therefore fix 7 = 8�*�� and �� = ���   as exogenous parameters and require the distribution variables 

�� , ��  to satisfy the first-order KKT optimality conditions of the following problem: 

 max{| , }| 1 %� �V7 − �� �W �� �
2�E�
��� . (28) 

s.t. 

 ~y:     1 − 1 %� �
2�E�
��� ≥ 0. (28.1) 
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 ~�:     V7 − ��W�-. − 1 %��7 − ���� �-. = 0.�
2VEW
���   (28.2) 

 0 ≤ ��� < ��� < ⋯ < �2�E�� ≤ 7. (28.3) 

 %�,� %�, … ,� %�� > 0. (28.4) 

With ~y and ~� as the Lagrange multipliers, we write 

 �V �� , �� ; ~y, ~�W
= 1 %� �V7 − �� �W �� �

2�E�
��� + ~y � 1 − 1 %� �

2VEW
��� �

+ ~� �V7 − ��W�-. − 1 %��7 − ���� �-.  �
2VEW
��� �. 

(29) 

We are interested in the following two necessary conditions: 

 t��∙�t ��� = %��7� − 2 ��� + ~� %��1 − /��� V7 − �� �W-. = 0      � = 1,2, … , 4V7W. (30) 

 t��∙�t %�� = �7 − ��� ��� − ~y − ~�� V7 − �� �W�-. = 0      � = 1,2, … , 4V7W. (31) 

By the strict concavity of the utility function we have 

 0V7W = V7 − ��W�-. − 1 %��7 − ���� �-.  �
2VEW
���

> V7 − ��W�-. − �7 1 %�  �
2VEW
��� − 1 %�  �

2VEW
��� ∙ ��� �

�-.
. 

(32) 

By Lemma 1 we have �� > ∑ %� �2VEW��� ∙ ��� . Since 0V7W = 0  we get by equation (32) that 

∑ %� �4V7W�=1 < 1. Thus, the constraint (28.1) can never be binding at any optimum and ~y = 0.  
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Next, we assume without any loss of generality, that all %� ∊ ���  are non-zero. (If any of the 

probabilities were zero, we could just drop the corresponding price variable and deal with the 

form*�-�; we would then appropriately require � ≥ 4).  

From equations (30) and (31) we get: 

 2 �� − 7��1 − /�V7 − ��� W-. = ���V7 − ��� W-.       ∀� = 1,2, … , 4V7W; ∀� = 1,2, … , 4V7W. (33) 

However, this condition may possibly be satisfied by exactly two prices: 
E�-. and 7.   In order to 

see that, consider the following two functions 

 ����� = 2� − 7�1 − /�V7 − �W-.. (34) 

 ����� = �V7 − �W-.. (35) 

Let now � = E�]. + i where i is a constant. We evaluate the difference at this point: 

 ����� − ����� = i I7 − 71 + / − iJ _7/ − i�1 + /�`. (36) 

When � < 7, both terms in curled brackets are strictly positive, and the two functions intersect if 

and only if i = 0. When� → 7, both functions ����� and ����� approach zero, and the difference 

between them becomes arbitrarily small. This constitutes a contradiction of the optimality of policy 

*� with any � ≥ 3, so we conclude that the optimal policy with risk aversion entails charging exactly 

two prices, which completes our proof. □ 

Theorem 3: We begin with the formulation of the seller’s (constrained) profit-maximization 

problem:  

 max�
,�r,x �� <1 − �� − % ��-.��1 − % ��-. = + %�� <�� − % ��-.��1 − % ��-. − ��=. (37) 
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        s.t.: 

 ~�:      �� + e − 1 ≥ 0. (37.1) 

 ~�:     �� − �� ≥ 0. (37.2) 

We write 

����, �, �; ~�, ~��
= �� <1 − �� − % ��-.��1 − % ��-. = +%�� <�� − % ��-.��1 − % ��-. − ��= + ~1V�2 + e − 1W
+ ~2V�1 − �2W. 

The set of first-order KKT necessary conditions comprises: 

 t��∙�t�� = 11 − % ��-. Z1 − 2�� + �� Z% + % ��-.[ − % ��-.[ + ~� = 0. (38) 

 t��∙�t�� = 11 − % ��-. Z�� Z% + % ��-.[ − ��%[ + ~� + ~� = 0. (39) 

 t��∙�t% = �� − ��
% Z1 − % ��-.[� �1 − /� u��% ��-. − �� Z%�1 − /� + /%�-.�-.[v = 0. 

(40) 

 ~���� + e − 1� = 0. (41) 

 ~���� − ��� = 0. (42) 

 ~�, ~� ≤ 0. (43) 

Let us denote by ������/� the optimal solution for the second period price we obtained earlier for 

the uncapacitated case of Theorem 2. Note that the following holds for every /: 

 1 − ������/� ≥ 12 ≥ 1 − /2 − / > 0     , 0 ≤ / < 1. (44) 

There exist three possible cases of capacity availability:  
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(i). 1 ≥ e ≥ 1 − ������/� ≥ �-.�-.. 
(ii). 1 − ������/� > e ≥ �-.�-.. 
(iii). 

�-.�-. > e ≥ 0. 
We discuss each case separately. 

Case (i):   Obviously, the solution is the same as in the case with no production capacity 

constraint. The capacity in this case always exceeds the required threshold, and the monopoly profit is 

always higher than 
�K, as required.  

Case (ii)   In this case we can always find a (two-price) policy that dominates any single price 

scheme. It suffices to show a solution that can be checked to verify this assertion for any parameter 

values: 

*∗�/, e� = _��∗, {��∗, 1}, {%∗, 1 − %∗}`. 
 ��∗ = 12 + %∗ + �%∗� ��-.2 �1 − e�. (45) 

 ��∗ = 1 − e. (46) 

where %∗ ∊ �0,1� is given implicitly as the unique feasible solution to the equation 

 % ��-.e + 2%�1 − e��1 − /� − % ��-.V1 + %�1 − e��1 − 2/�W = 0. (47) 

Case (iii)   It remains to show that in this case there exists no policy that dominates the optimal 

one-price scheme that entails charging a price of (1 − e) in a single period. Let  

* = *�/, e� = _��, {��, 1}, {%, 1 − %}` 

and assume that S is optimal and strictly dominates any one-price policy. In this case �� > ��  and 

thus ~� = 0. Condition (38) yields 
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  �� = 12 u1 − % ��-. + Q% + % ��-.R �1 − e�v.     (48)  

By plugging the above expression into condition (39) we get, 

 12 Z% + % 11−/[ u1 − % 11−/ + Z% + % 11−/[ �1 − e�v − 2%�1 − e�
+ ~� Z1 − % 11−/[ = 0 

(49)  

Let us rewrite this later condition as follows 

 12 Z% + % 11−/[ Z1 − % 11−/ + Z% + % 11−/[ �1 − e� − 2�1 − e�[
− 2%�1 − e� + Z% + % 11−/[ �1 − e� + ~� Z1 − % 11−/[ = 0 

(50)  

By gathering terms we get: 

 12 Z% + % 11−/[ u−1 + % + e Z2 − % − % 11−/[v + Z−% + % 11−/[ �1 − e�
+ ~� Z1 − % 11−/[ = 0 

(51)  

With the variables of the policy  * , the second and the third terms on the left-hand side of 

condition (51) are negative. Therefore, for optimality to hold, the first term on the left-hand side of 

(51) must be positive: 

 e ≥ 1 − %2 − % − % ��-.. (52)  

Whereas for any % and / (0 ≤ %, / ≤ 1) it can be shown that, 

 1 − %2 − % − % ��-. ≥ 1 − /2 − /. (53)  
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This is a contradiction to capacity falling under case (iii). Hence, there exists no policy that 

dominates the optimal one-price scheme when available capacity falls below the threshold defined in 

Theorem 3. □ 

Theorem 4: The result stems directly from the solutions for both uncapacitated and 

capacitated optimal policies as given by equations (23) to (25) and (45) to (47)}, respectively.  
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Figure 3: Unconstrained Model’s Behavior  

Figure 3D: Seller's Profit
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Figure 3A: Optimal "Spot" and "Sale" Prices
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Figure 3B: Optimal Probability of a "Sale" Event (Alpha) 
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Figure 3C: Two-Channels Sales Breakdown
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Figure 5: Two-Channel Sales Breakdown with Exogenous α 

Figure 4: Optimal Pricing with Exogenous α  
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Figure 6: Feasibility of Segmentation under Capacity Constraint  
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