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1 Introduction

The Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model suggests that the

expected returns of risky assets should be determined by the covariance of their returns

with the returns on the market portfolio. However, studies by Fama and French (1992)

and others uncover almost no relation between market betas and expected returns, and

instead find a strong cross-sectional relation between characteristics like size and book-

to-market and returns. The nature of the underlying mechanism responsible for these

empirical findings has now been a source of of debate for several decades, and there is still

no consensus. One hypothesis is that a firm’s size and book-to-market serve as proxies

for the riskiness of the firm. Another possibility is that these characteristics proxy for

mispricing, i.e., high book to market stocks have higher expected returns because they

are undervalued.

The results of Fama and French (1993) appear to provide support for the first hypothesis

by showing that a set of factor-mimicking portfolios, MKT, SMB and HML, do a fairly

good job of pricing the cross-section of stock returns. However, for several reasons this evi-

dence is not particularly satisfying. First, the SMB and HML factors are not economically

motivated; they are simply the returns from the financial assets that others conjecture

are potentially mispriced. Indeed, Daniel and Titman (1997) argue that even if mispric-

ing is responsible for the cross-sectional differences in returns, factor portfolios that are

constructed in this way would still price size and book-to-market sorted portfolios.

Largely because of such concerns, a set of more recent papers have attempted to dis-

cover the underlying risks that might be responsible for the observed return patterns.

If we abstract from liquidity and behavioral considerations, an asset’s expected return

is determined by the covariance between its realized returns and a representative agent’s

marginal utility, suggesting that the returns of the SMB and HML portfolios must in some

ways capture the variation of more fundamental economic factors that are correlated with

marginal utility. Researchers have investigated a number of such economically-motivated

factor models.
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We divide these models into two categories: Conditional (C)CAPM Models and Alter-

native Factor Models. The conditional versions of the CAPM and Consumption-CAPM

(CCAPM) of Breeden (1979) retain the basic structure of the CAPM or CCAPM, but

allow for time-variation in the covariation of asset returns with the market return (or

consumption growth, in the case of the CCAPM), and time variation in the premium as-

sociated with this covariation. These models can be written as unconditional multifactor

models where one factor is the market return, and the second factor is the market re-

turn interacted with a conditioning variable (see, e.g., Harvey (1989), and later Cochrane

(1996)). Similarly, a Conditional-CCAPM model can be expressed as a multi-factor model

with factors equal to consumption growth and consumption growth interacted with a con-

ditioning variable. Thus, the models effectively augment the market return (or consump-

tion growth) with an additional factor equal to the scaled market or to scaled consumption

growth.1

Alternative Factor Models propose a factor other than the standard market portfolio

return or consumption growth as a pricing kernel. Some of the proposed models are

unconditional (time-invariant), while others are conditional, meaning that the premium

associated with the factor covariation, and the premium associated with this covariation

are time varying. Based on the logic of Harvey (1989), such conditional factor models can

be tested as scaled multifactor models with additional factors equal to the factors scaled

by instruments which capture the time variation. Thus, both the Conditional (C)CAPM

Models and Alternative Factor Models include additional factors beyond the standard

market return (or consumption growth) that is missing from the standard (C)CAPM.

The models that have been proposed and tested are based on a number of plausible

economic stories for why value stocks might be riskier than growth, and suggest economic

factors that capture that risk. A subset of the papers that propose these tests is listed

in Table 1. The tests in these papers generally fail to reject the proposed factor models,

1However, as with tests of any model, a rejection of a conditional factor model with a specification of
this kind is a joint rejection of the factor model and the instruments used to capture the time-variation
in the conditional covariance. If the instruments do not fully capture the time-variation the model may
be incorrectly rejected.
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suggesting that there are a number of plausible economic factors that can explain the

value effect.

While at first glance these results appear promising, there are several reasons to question

these findings. The first concern is that these results present a conundrum for anyone

attempting to use the models. Which, if any, of these dozen or so models is the correct

one to use in determining cost of capital? The results in these papers offer no answer to

this question, as each of the proposed models appears to “work” reasonably well. If it

were the case that each of the factor models would give about the same answer, this might

not be a concern. However, the correlations between the proposed factors are actually

very low, suggesting that the different models yield very different expected returns/costs

of capital.

A second related concern is that asset pricing theory implies that there is a unique factor

in the span of the asset return space that prices all assets.3 This implies that the only

way that two single factor models can each price the full cross-section of returns is if the

projections of each of these factors onto the asset return space are equal. In other words,

if the factors in two proposed single factor models both lie in the asset return space, then

at most one of the two models can be correct.4

We argue here that the failure of these tests to reject so many different proposed factor

models – with such low correlations between the proposed factors – is not because the

data are supportive of the models. Instead, we argue, the culprit is the test methodology:

all of these tests are done using portfolios – typically the 25 size and book-to-market

portfolios first examined in Fama and French (1993) – and a Fama and MacBeth (1973)

3Following Hansen and Richard (1987), in incomplete markets multiple pricing kernels (m̃’s) may exist
which price all assets, but there exists a unique projection of each of these pricing kernels onto the space
of asset returns m̃∗. Following Hansen and Jagannathan (1991), this is equivalent to the statement that
there is a unique mean-variance efficient portfolio that prices all excess returns.

4Yet another concern is raised by several studies that suggest problems with the proposed conditional
(C)CAPM specifications. Lewellen and Nagel (2006) argue that the covariance of the conditional expected
return on the market and of the conditional market betas of high and low book-to-market stocks is not
high enough to explain the value effect. Also, Hodrick and Zhang (2001) find large specification errors for
the Lettau and Ludvigson (2001) conditional CCAPM model. However, tests of these conditional CAPM
models fail to reject the models, again suggesting the possibility that the failure to reject is a result of
low test power.

4



like test methodology.5

There are two motivations for using test portfolios rather than individual stocks to test

these models. The first is that it reduces the errors in variables problem that would

otherwise plague the second stage Fama-MacBeth regression; since betas are estimated

with error, the coefficients in the second stage regression are biased. A second problem

has to do with the efficiency of the estimates. A more efficient GLS version of the Fama-

MacBeth procedure requires an estimate of the covariance matrix, which creates challenges

when the cross-section is larger than the time series. However, forming portfolios in the

way that is done in these papers – on the basis of either just characteristics or just factor

loadings – has the unintended consequence of inducing very high correlations between

alternative factor loadings and the characteristics. As we show in Section 4, because of

this, the tests have low power, that is the tests are unlikely to reject the proposed models

even when the models are false.

The motivation for the use of book-to-market (BM) sorted portfolios as the test portfolios

is also intuitively appealing: we know that there is a strong empirical relation between

book-to-market and average returns. Intuitively, in constructing portfolios with a large

dispersion in average returns, such sorts should, a priori, produce higher test power.

However, BM is a “catch-all” variable, one that will proxy for sensitivity to a variety of

macroeconomic innovations. For example, because growth firm values derive more from

growth options, BM sorts will capture differential sensitivity to business cycle innovations.

Thus, book-to-market sorted portfolios are likely to produce both variation in expected

returns and (correlated) variation in the loadings on any number of macroeconomic fac-

tors. Moreover, in grouping all of the assets with similar BM together, any variation in

factor loading that is independent of BM is largely eliminated. The end result is that,

even if the loadings on a proposed factor are only loosely correlated with the expected

returns of the individual assets in the economy, the sorting procedure will result in a set

of test portfolios which exhibit a strong relation between loadings on the proposed factor

5Note that generalized method of moments Hansen (1982, GMM) tests of moment restrictions across
the 25 portfolios (for example) are still subject to the critique discussed in this paper.
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and expected returns. The problem is that, in grouping all of the assets with similar BM

together, any variation in factor loading that is independent of BM is washed out.

A slightly more technical way of seeing this is as follows: an asset pricing model will

explain the average returns of a set of portfolios if and only if the pricing kernel implied

by that model prices the test assets. Since the payoffs of any set of test assets will not

span all sources of risk, there will not be a unique pricing kernel (a unique m̃). However,

there is a unique pricing kernel that lies in the span of the payoffs/returns of the test

assets (a unique m̃∗). Moreover, any model with an implied pricing kernel m̃i = m̃∗ + ẽi,

where ẽi is outside of the space spanned by the payoffs of the test assets, will properly

price the set of test assets.

The problem with the use of the 25 size-BM sorted portfolios as test assets is that their

payoffs lie in a low-dimensional subspace of the full payoff space. Specifically, Fama and

French (1993) show that the average R2 in time-series regressions of the returns of their

25 portfolios on their three stock market factors is 93%, and there is little variation in the

loading on the market factor.6 This means that, to a close approximation, the returns of

the 25 FF portfolios lie in a two-dimensional subspace spanned by HML and SMB.

Many sources of economic risk can be expected to lie outside the span of the returns

of these test assets, even if these sources of risk could be hedged using other portfolios

of stocks. Moreover, if the risk-premium associated with each factor is left as a free

parameter, as is generally done in the Fama and MacBeth (1973) procedure, any factor

which is loosely correlated with the m∗ implied by HML and SMB will appear to properly

price these test assets, even if this model would not properly price a fuller set of assets.

This means that a powerful test requires that the test assets span a higher dimensional

space. Specifically, the test assets should be augmented by portfolios which expand the

space in the direction of the proposed factor, but which have no exposure to the underlying

characteristics that – according to the alternative hypothesis – actually explain returns.

6See Table 6 of Fama and French (1993). Reported regression R2s range from 83% to 97%. Reported
loadings on [RM(t)−RF (t)] range from 0.91 to 1.18.
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To construct such portfolios requires the use of an instrument which is correlated with

variation in loading on the proposed factor, and which is imperfectly correlated with

book-to-market. In our empirical tests below, we use two sets of instruments: first, we

use estimates of lagged betas on the proposed factors; second, we use industry mem-

bership. Industry portfolios exhibit variation in factor loadings relative to a number of

macroeconomic factors but this variation is, to a large extent, unrelated to book-to-market

ratios.

Using these instruments to form portfolios, we reexamine several of the models proposed

in the literature. Based on this preliminary analysis, we argue that before any of these

models can be accepted as an full explanation of the book-to-market effect more powerful

tests, based on the framework we lay out here, need to be carried out.

The outline of the remainder of the paper is as follows. In Section 2 we discuss the

conditional and unconditional tests and motivate the empirical design of the tests we

discuss. In Section 4, we evaluate the power of the proposed tests both via some basic

analytical results and a set of simulations. More formally, we do this by proposing an

alternative hypothesis, and argue that this test methodology yields low power against

this alternative. Second we propose a methodology that has higher statistical power.

In Section 5, we apply this new methodology to test several recent alternative factor

models, and find that these model are rejected at high levels of significance with the new

methodology. Section 6 concludes.

2 The Equivalence of Conditional (C)CAPM Tests

and Multi-Factor Models

In this section, we show that conditional CAPM models can be written as unconditional

multifactor models where one factor is the market return, and the second factor is the

market return interacted with a conditioning variable (Cochrane (2000)). Similarly, a

conditional-CCAPM model can be expressed as a multi-factor model with factors equal
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to consumption growth and consumption growth interacted with a conditioning variable.

The intuition behind this argument is best seen via an example: suppose that, the market

is conditionally mean-variance efficient, which means that for all assets i:

(Ri,t+1−Rf,t+1) = βi,t(Rm,t+1−Rf,t+1) + εi,t+1

where εi,t ⊥ 1, (Rm,t+1−Rf,t+1). Taking (conditional) expectations of each side gives:

Et[Ri,t+1−Rf,t+1] = βi,tEt[Rm,t+1−Rf,t+1].

This is the usual statement of the conditional CAPM. However, suppose also that the

expected return on the market varies over time. There is now substantial evidence con-

sistent with this: market returns are high in business cycle troughs and low at business

cycle peaks.

Notice that, if value stocks have a high beta (i.e., if β >> 1) when the market’s expected

return is high, and a low beta (β << 1) when the market return is low, then the average or

unconditional beta of the value stock could be close to 1, but the unconditional expected

return of the value stocks would be much higher than the market’s. Intuitively, the value

stocks are effectively ”market timing,” taking on more risk when the reward to risk ratio

(i.e., the expected return on the market) is higher. Thus, if the CAPM were tested

unconditionally, it would be rejected.

The same argument suggests that, if the consumption-CAPM holds, but the premium to

consumption beta varies over time and the consumption beta of value stocks positively

covaries with this premium, a test of the unconditional CCAPM will be rejected.

A remedy to this problem is to test a conditional version of the CAPM or CCAPM. This is

typically done by assuming the asset’s market beta is a linear function of a n-dimensional

vector of instruments Zt in the investors information set at t.7 The restriction that is

7Again, an important caveat here is that, if the underlying assumption that the βi,t = β′iZt is incorrect,
the model may be incorrectly rejected
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then tested is that the conditional loadings on the factors explains the average returns of

the test assets, i.e., that:

(Ri,t+1−Rf,t+1) = (β′iZt)(Rm,t+1−Rf,t+1) + εi,t+1

where the restriction that is now tested is that E[εi,t+1 · (Rm,t+1−Rf,t+1)Zt] = 0.8

As has been pointed out in Cochrane (2000), this test is equivalent to a test of a multi-

factor unconditional model in which the factors are the market, and a set of “scaled”

market returns, that is:9

ri,t+1 = β1,i rm,t+1 + β2,i(rm,t+1Z2,t) + · · ·+ βn,i (rm,t+1Zn,t) + εi,t+1

The important thing for us is that these tests are therefore equivalent to tests of the

CAPM (or the CCAPM) plus one or more additional factors added on.

Thus, if the uncondtional CAPM fails and the conditional CAPM properly prices value

and growth portfolios, it must be the case that it is covariation with the scaled market

return that is responsible for the differences in expected return on the value and growth

portfolios.

2.1 Conditional CAPM Model Tests

A number of (C)CAPM tests have now been proposed in the literature. One that has re-

cently received a good deal of attention is that of Lettau and Ludvigson (2001, henceforth

LL). LL argue that, based on the intuition behind the Campbell and Cochrane (1999)

model, their cay variable should be a good proxy for the market risk premium.

In this paper, LL show that the betas of value/growth stocks are higher/lower when the

8Note that this is not the same as a conditional test of the conditional model. This would be a test of
the restriction that E[εi,t+1Zt] = 0 or that E[εi,t+1(Rm,t+1−Rf,t+1)Zt ⊗ Zt] = 0. See also Appendix A.

9Here, we are implicitly assuming that the first element of Zt is one.
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expected return on the market is high (i.e., when cay is low). Even if value stocks have

a lower unconditional beta than do growth stocks, their betas are much higher when

the expected return on the market is higher. Thus, were one to test the unconditional

CAPM on value/growth stocks, one could reject it. However, LL argue that once the

conditional variation in beta and the expected return on the market is taken into account,

the conditional CAPM and CCAPM do a good job of explaining these returns.

The methodology used by LL to test the conditional CAPM is similar to that used in

many recent papers: they test whether the returns of the Fama and French (1993) 25

size/BM sorted portfolios can be explained by their conditional CAPM using Fama and

MacBeth (1973) tests. They find that it does a very good job.

However, an alternative test of the LL conditional CAPM model is based on a Gibbons,

Ross, and Shanken (1989, GRS) like time-series regression (as employed by Fama and

French (1993)). For example, one can examine test whether the return of the Fama and

French (1993) HML portfolio can be explained using the single regression:

HMLt = α + βvwR
e
vw,t + βvwz ĉayt−1R

e
vw,t + et (1)

For a conditional CAPM model such as this one, the interaction term ĉayt−1R
e
vw,t captures

the extra return arising from the covariation of the HML beta with the expected return

on the market, as discussed in the preceding subsection.

Using quarterly data over the period 1953:01-1998:04, the same period examined by LL,

the estimated intercept (α̂) for this regression is 1.26%/quarter, (t = 3.47), which is

both economically and statistically significant. For comparison, without including the

ĉayt−1R
e
vw,t interaction term, the α is 1.50% (t=4.16). The difference between the intercept

terms in the two regressions is 0.24%/quarter, which is not statistically different from zero.

This simple regression dramatically illustrates the point argued by Lewellen and Nagel

(2006): while the betas of value stocks do increase in economic downturns, they don’t
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increase anywhere near enough to explain the high returns of the HML portfolio.10

This straightforward rejection of the LL model raises the question of why the tests reported

in Lettau and Ludvigson (2001) appear to offer such strong support for their model? The

answer, we argue in the next section, is that the ir tests fail to reveal evidence inconsistent

with the model because their test methodology, which is used throughout this literature,

has extremely low power.

3 Correlations of Candidate Factors

Table 2 shows the correlations of nine alternative factors utilized in models that have been

proposed as potential explanations for the value premium, specifically those listed in Table

1. Among the factors, HML is the Fama and French (1993) value factor, rm is the excess

return on the CRSP value weighted index; ∆c is the quarterly change in log nondurable

and services consumption; ∆y is the quarterly change in log income; ∆(prop) is the log-

change in proprietary income; ∆ log(α) is equal to consumption growth plus the change

in the non-housing expenditure ratio (as in Piazzesi, Schneider, and Tuzel (2007)); and

finally NCF is the cash-flow news variable (Campbell and Vuolteenaho (2004)). Among

the instruments, DP is the dividend-price ratio of the CRSP value-weighted index at the

beginning of each quarter; ĉay is the cay variable from Lettau and Ludvigson (2001); s is

the labor income to consumption ratio of Santos and Veronesi (2005);

The correlations are all calculated on a quarterly basis. Each conditioning variable (DP ,

ĉay and s) is demeaned. The sample correlations are each estimated using quarterly data

over the period 1963Q4:1998Q3.

Interestingly, the correlation matrix shows that the correlations of each of the factors

with HML is low – the highest is a 27% correlation with −NCF , the principal factor of

10A simple test like this cannot be used to test the CCAPM, because the conditional MVE portfo-
lio (which here will be the portfolio maximally correlated with consumption (Breeden (1979))) is not
observable.
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Campbell and Vuolteenaho (2004).11 In addition, the correlations between the proposed

factors are also for the most part quite small. Here, other than the correlations between

DP , ĉay, and s interacted with the market, the maximum correlations between two factors

is 28% (between the change in proprietary income and the log growth in the non-housing

expenditure ratio.) Other than these the correlations are generally less than 20%.

4 Test Power for Characteristic Sorted Portfolios

There are now more than a dozen factor models that explain the returns of portfolios

sorted on size and book-to-market. It can’t really be the case that all of these factor

models are “correct,” in the sense that they all explain the cross-section of stock returns.

Thus, our first task is to explain how so many different factors, with such a low average

correlation, seem to explain the cross-section of returns.

As we discussed in the introduction, our explanation for this is that these tests are designed

in such a way that the test lack statistical power. Specifically we argue that, under very

weak conditions, any factor will appear to explain the average returns of size and book-

to-market sorted portfolios. That is, these tests will make it appear that returns are

consistent with the factor model even when they are not.

To illustrate this point, this section presents a simulation that demonstrates how the

FF-FM methodology can provide spurious support for a factor model. This simulation is

then used to motivate our approach for testing factor models against the characteristic

alternative, an approach that we implement in our empirical tests in Section 5.

4.1 Simulation Results

The simulations presented here consider a factor that has been proposed to explain the

observed cross-sectional relation between returns and characteristics. For example, in-

11See Section 5.3 for a discussion of the performance of this factor model, and in particular of this high
correlation.
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novations in housing price changes have been proposed as a factor that explains the

book-to-market effect, which is known to be related to expected returns. To abstract

from estimation problems we assume that we accurately measure both a firm’s factor-

beta and its expected return. In addition, we assume that factor betas are correlated

with the characteristic.

In our simulations we randomly draw 2500 log book-to-market ratios and the single factor

beta from a correlated normal distribution. Specifically, we draw from a multivariate

normal distribution such that:

bmi = log(BMi) ∼ N (0, 1)

βi ∼ N (0, 1)

ρ(bmi, βi) = ρbm,β.

We assume a relatively weak correlation between the characteristic and the factor loading

of ρ = 0.3, which is low enough to allow us to distinguish between the two hypotheses

in an appropriately designed test. As we mentioned earlier, there are a number of good

reasons why factors are likely to be correlated with book-to-market ratios. Theoretically,

we know that a firm’s book-to-market ratio is a good proxy for a firm’s future growth

(see, e.g., Fama and French (1995), Cohen, Polk, and Vuolteenaho (2003)), and high- and

low-growth firms are likely to have different sensitivities to a number of economic factors.

Empirically, Table 1 shows that this is indeed the case.

Figure 1 illustrates the distribution of characteristics and factor loadings that are gen-

erated from the simulation. This figure has two plots. Consider the left side plot first.

The vertical (y-axis) is the firm’s log book-to-market ratio, and the horizontal (x-axis) is

the factor beta. Each of the 2500 crosses in this figure represents a single firm or stock.

The weak correlation can be seen in the distribution of the crosses: high β firms generally

have high BM ratios, but there is considerable variation in βs that is unrelated to BM.

Figure 1 illustrates the null and alternative hypotheses we’ll consider. The null hypothesis,

that the factor model fully explains the cross-section of returns, is represented by the left
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Figure 1: Null and Alternative Hypotheses
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plot. Under the null, a stock’s expected return increases with β (as you move to the right

in the plot), but is unrelated to book-to-market after controlling for beta. Of course, there

is still an unconditional relation between book-to-market and expected returns.

This null hypothesis is a risk-based story for the book-to-market effect: a firm’s book-to-

market ratio forecasts its future return because it serves as is a proxy for systematic risk.

Under this hypothesis, if the factor loading can be observed, it will better explain average

returns than book-to-market ratios.

A test’s power is defined as the probably of the test’s rejecting the null hypothesis given

that the alternative is true. Thus, test power can only be evaluated relative to an alter-

native hypothesis. The alternative hypothesis we propose is illustrated in the right hand

side plot in Figure 1. Under the alternative, the expected return is linearly related to the

log book-to-market ratio, but is not directly related to the factor beta. That is, the beta

is related to returns only through its correlation with the characteristic.

To evaluate power of the tests, we calculate expected returns under the alternative hy-

pothesis; that is:

E[r] = λ0 + λ1 log(B/M).

Following, the test procedures used in the literature, we then sort the 2500 (simulated)

firms into 10 portfolios depending on their book-to-market ratios. This sort is illustrated
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Figure 2: BM-Sorted Portfolio Formation
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in the left panel of Figure 2. Each horizontal line in the figure represents the cutoff

between the BM deciles: the number of firms between any two lines is 250 (one-tenth of

the sample).

This figure illustrates the problem that arises when characteristic sorted portfolios are

used to test factor models. Notice that the top decile will have a high average BM ratio,

and will therefore have a high expected return. In addition, it will have a high factor

beta as a result of the correlation between beta and BM. As we move from the top to the

bottom BM decile, the average return and the average (portfolio) beta declines.

Note also, that there is very little variation in betas in the different deciles, since differences

in the betas that are not correlated with the characteristic is “diversified away” by the

portfolio formation procedure. As a result, as we show in the right panel of Figure 2,

which plots the expected returns and betas for these 10 portfolios, these variables are

very highly correlated. The regression R2 here is 94.4%. The reason is that for this set

of characteristic-sorted portfolios, there is almost no independent variation in beta.

One can alternatively sort stocks into portfolios based on risk rather than characteristics.

Figure 3 illustrates this formation method. In the left-hand plot the vertical lines show the

cutoffs between beta-sorted deciles. The right side figure plots the expected returns and

betas of these portfolios, and the regression line relating these two. The corresponding
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Figure 3: Beta-Sorted Portfolio and Cross-Sectional Test
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regression line for the BM sorted portfolios is also shown.

This plot shows that sorting portfolios in this way results in a lower estimated factor risk

premium, but still yields a strong estimated relation between risk and return under the

alternative, and again a good model fit, with a regression R2 of 97.4%. Here, the problem

is that high beta portfolios have, on average, high BM ratios and therefore high returns.

Sorting in this way, there is almost no independent variation in BM across portfolios so

that the betas and the characteristics are again almost perfectly correlated, making it

impossible to discriminate between the two hypotheses.

In order to discriminate between to the two hypotheses one must construct test portfolios

in a way that significant independent variation in betas and BM ratios. Figure 4 shows

how this can be done with a multiple sort procedure.

The left panel of Figure 4 is similar to the corresponding panel in Figure 2: the horizontal

lines again show the bounds of the 10 BM-sorted portfolios. Now, however we have

superimposed on the plot a set of vertical lines which indicate the result of splitting

each of the BM decile portfolios into 10 sub-portfolios based on beta; each of the 100

BM/beta sorted-portfolio contains 25 firms. With these portfolios there is substantial

independent variation in beta, and therefore it is possible to discriminate between the

null and alternative hypotheses.
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Figure 4: Characteristic/Beta Sorted Portfolio Test
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The results of the regression tests on the three sets of portfolios are summarized in Table

3. Notice that the R2s are high in each of the three tests. The R2 is clearly not a good

indicator of model fit. Notice also that, for the test on either the BM-sorted or β-sorted

portfolios, the estimated risk premia are large and highly significant. Only when the test

is done with the multiple-sort portfolios, and when dummy variables are included for the

BM ranking, does the premium get close to the true value of zero. Interestingly, even in

the third test, the estimated premium is still significant in the simulation. The reason is

that, within each of the 100 portfolios, there is still some correlated variation in expected

return and book-to-market.

5 Empirical Tests

We now reexamine the results of three tests factor models. In each case we modify test

by expanding the set of test assets as discussed in Section 4.

In Section 5.1, we revisit tests of the CAPM in the 1929-1963 period. Several recent tests

have failed to reject the CAPM over this sample period – we argue as a result of low test

power. We rexamine the performance of the CAPM with a test which remedies the low

test power and find that we can comfortably reject the CAPM in this pre-1963 sample

period.
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Sections 5.2 and 5.3, examine tests of the Campbell and Vuolteenaho (2004) model in the

post-1963 time period. Over this sample, they find that while a standard CAPM cannot

explain the pattern of average returns, their model with cashflow and discount-rate betas

can successfully explain the return patterns observed in this period.

In Section 5.4, we explore an alternative method of increasing test power – specifically by

augmenting the asset return space utilizing industry portfolios. We apply this approach

to test the model of Lettau and Ludvigson (2001).

5.1 The Performance of the CAPM over the Pre-1963 Period

Campbell and Vuolteenaho (2004) and Ang and Chen (2007) argue that the standard

CAPM is not rejected over the 1929-1963 period. In contrast with the post-1963 period

in which the market betas of value stocks are relatively low, in the 1929-1963 period the

betas of value stocks are large and consistent with the higher returns earned by value

stocks over this period. In formal tests both papers fail to reject the CAPM over the

1929-1963 time period.

We begin our empirical analysis by re-examining the data from this period using portfolios

which employ our sort methodology. Table 4 shows the average returns and post-formation

betas for our portfolios. Our portfolio formation procedure closely follows Daniel and

Titman (1997). We form 45 portfolios using the following procedure: First, we sort all

firms into three portfolios on the basis of market capitalization (or size) as of December of

year t, on the basis of NYSE breakpoints. Additionally, we sort firms into three portfolios

on the basis of the firm’s book to market ratio. The book to market ratio is defined as

the ratio of the firm’s book value at the firm’s fiscal year end in year t, divided by the

firm’s market capitalization as of December of year t.

Then, we sort each of the firms in these nine portfolios into five sub-portfolios based on

the estimated pre-formation market betas (βmkt) of these portfolios. We estimate the

pre-formation betas by running regressions of individual firm excess monthly returns on

18



the excess monthly returns of the CRSP value weighted index for 60 months leading up

to December of year t. Sub-portfolio breakpoints are set so that, across each size-BM

portfolio, there are an equal number of firms in each sub-portfolio.12

We then construct the realized returns for each of these 45 test portfolios. Even though

the portfolios are formed using data up through the end of year t, we examine the returns

from these portfolios starting in July of year t + 1. The reason for this (following Fama

and French (1993)) is that the book value data for the firm is unlikely to be publicly

available as of January of year t + 1, but it is almost certain to be available as of July.

All of our portfolio returns are value-weighted. The portfolios are then rebalanced at the

start of July of year t+ 2 using the new firm data from the end of year t+ 1.

The upper panel of Table 4 gives the average returns and t-statistics for each of our

45 portfolios. The lower panel gives the estimated post-formation betas for the realized

returns, and the t-statistics associated with these betas. The final row of each of the

two tables gives the average return/beta and the associated t-statistics for the “average

portfolio,” which is an equal weighted portfolio of each of the nine sub-portfolios in the

same pre-formation beta group.

Finally, the last two columns of each table give the average return/beta and the associated

t-statistics for the 5−1 difference portfolio: that is a zero investment portfolio which buys

one dollar of the high-estimated beta portfolio and shorts one dollar of the low-estimated

beta portfolio.

A couple of important features of the data are evident in this Table. First, in the lower

panel, in the two rightmost columns, note that our sort on pre-formation beta produces

an economically large and highly significant spread in post-formation (realized) betas.

This is important for the power of the test.

In contrast, the rightmost columns in the upper panel of Table 4 show that the sort on

preformation beta produces little spread in average returns. The average return and t-

12However, note that the number of firms in the size-BM portfolios will vary because of the use of
NYSE breakpoints in the size portfolio sort.
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statistic in the lower right corner of this panel shows that the mean return differential

between the high beta and the low beta portfolios is only 0.02% per month. The nine

entries directly above this show that the differences in beta don’t produce a statistically

significant difference in return for any of the nine size/BM portfolios.

It is important to note that the observation of Ang and Chen (2007) and Campbell and

Vuolteenaho (2004) that higher book to market is associated with higher beta in his early

period is confirmed in our test: the lower panel of our table shows that, on average, higher

book to market firms and smaller firms do indeed have higher betas: consistent with the

reasoning laid out here, this positive correlation implies that market beta “explains”

returns fairly well for size/B-M sorted portfolios. However, this positive correlation does

not imply that the CAPM explains the returns of the full cross-section of common stocks

in this period. When we expand the set of portfolio so as to capture variation in beta

unrelated to variation in size or book to market, we see that differences in beta that

are independent of differences in book to market are not associated with average return

differences, at least at any statistically significant level.

We formally test the hypothesis that the CAPM explains the returns of these 45 portfolios

by running time series regressions of the realized excess returns of the portfolios on the

realized excess returns of the CRSP value-weighted portfolio returns over the 1929:07-

1963:06 period. That is, the regressions are of the form:

(r̃i,t − rf,t) = αi + βi(r̃m,t − rf,t) + ε̃i,t

The left part of Table 5 reports the estimated regression intercepts, and the right part

presents the t-statistics associated with these intercepts. The last row of the table gives

the intercepts and t-statistics for the average portfolio, and the last two columns give

the estimated intercepts and t-stats for the 5−1 difference portfolio. Consistent with

the average returns and estimated betas reported in Table 4, the estimated alphas are

negative, are economically large, and are highly statistically significant. Indeed, for the

average 5−1 difference portfolio (the lower-right entry in the table), the t-statistic is -4.42,
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strongly rejecting the single-factor CAPM in this time period.

5.2 Description of the Campbell and Vuolteenaho model

Campbell and Vuolteenaho (2004) propose a version of the Merton (1973) Intertemporal

CAPM as an alternative to the static CAPM, and present empirical evidence showing

that this model can explain the size/book-to-market anomaly. Their model relies on the

decomposition of the realized market return into three components: (1) the conditional

expected return (Et[rt+1]); (2) the component of the return attributable to news about

the level of future cash flows (NCF,t+1); and (3) return component attributable to news

about the discount rates applied to these cash flows by investors (−NDR,t+1):

r̃t+1 = Et[rt+1] + ÑCF,t+1 − ÑDR,t+1. (2)

Based on this decomposition, Campbell and Vuolteenaho (2004) estimate βs with respect

to the two return components. To understand the motivation of these empirical tests, it is

helpful to start with the representative agent model of Campbell (1993), which expresses

expected returns as

Et[ri,t+1]− rr,t+1 +
σ2
i,t

2
= γσ2

p,tβi,CFp,t + σ2
p,tβi,DRp,t,

where p is the portfolio the representative investor chooses to hold (i.e., the market), γ is

the coefficient of relative risk aversion of the representative agent, and βi,CFp,t and βi,DRp,t

are the components of portfolio p’s return attributable to cash-flow and discount-rate

news, respectively. It is clear from this equation that if γ = 1 (i.e., with a log-utility

representative agent) the standard CAPM will obtain, as the covariance with changes

in the investment opportunity set don’t affect expected returns, consistent with Merton

(1973). However. for a non-myopic representative investor, the premium associated with

cash flow and discount rate betas will differ. Since we generally believe that investor

preferences are characterized by γ > 1, the premium associated with cash flow risk should
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be greater than that associated with discount-rate risk.

The insight underlying the Campbell and Vuolteenaho (2004) model is that since growth

stocks have longer duration, their returns should be more sensitive to changes in discount

rates. Moreover, following Merton (1973), for reasonable preferences, covariance with

discount rate shocks is likely to command a far lower premium than a high covariance

with cash flow shocks. Thus, even though growth stocks have a higher market beta,

most of this is βDR, which has a low premium, so growth stocks (rationally) require a

lower risk premium. In contrast, while value stocks have lower market-beta, most of their

beta comes from βCF , which commands a high premium. Hence value stocks (rationally)

require a high risk premium.

As noted above, Campbell and Vuolteenaho (2004) find that over the 1929-1963 period,

the standard CAPM prices the 25 Fama-French portfolios. Their interpretation of this

observation is that value stocks have both a higher βDR and a higher βCF over this sample

period, and as a result, there is a high correlation between the CAPM single β and its two

components. However, over the 1963-2001 sample, the value stocks have a lower βDR, but

a higher βCF . The measured CAPM β, which is the sum βDR and βCF , is lower for value

stocks, but the average returns are higher because of the much higher premium attached

to cash-flow risk. This, they argue, leads to a rejection of the standard CAPM. However

based on their empirical tests they conclude that a model which allows for distinct premia

for βDR and βCF is not rejected.

To empirically decompose beta into its cash flow and discount rate components, Campbell

and Vuolteenaho (2004) first estimate discount rate shocks. To do this they use a number

of variables that forecast future market returns in a vector-autoregression (VAR). One of

these variables is their value spread – the difference between the average book-to-market

ratio of the Fama and French (1993) small-value and small-growth portfolios:

VSt = log

(
Bt

Mt

)
SmV al

− log

(
Bt

Mt

)
SmGro

. (3)

The reason for the inclusion of this variable is that this definition of the value-spread
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does a good job of forecasting the market return. However, given the inclusion of this

variable in the VAR process and the methodology employed, the estimated NCF is strongly

positively correlated with the returns to HML. Given Campbell and Vuolteenaho (2004)’s

estimated parameters:

NCF,t = 0.004 + 0.60 Rm,t + 0.40 Rm,t−1 + 0.01 ∆PEt − 0.88 ∆TYt − 0.28 ∆V St (4)

where ∆ is the one period change in the variable. Given the definition of the value-spread

in equation (4),

−0.28 ∆V St = +0.28rSH − rSL.

That is, the measured innovations in cashflow are positively linked to the difference

between the returns of small-value and small-growth firms, and consequently are also

strongly correlated with HML. This is important in understanding why βCF “picks up”

the value premium.

5.3 Tests of the Campbell and Vuolteenaho (2004) Model

Campbell and Vuolteenaho (2004) show that both over their full 1929-2001 period, and

over two sub-samples (1929-1963 and 1963-2001), their model can explain the returns of

the 25 size and values sorted portfolios, and in particular their model is not rejected in the

post-1963 period where the CAPM fails. Over this period, value stocks have a lower βDR,

but a higher βCF . The measured CAPM β, which is the sum of βDR and βCF , is lower

for value stocks, but the average returns are higher because of the much higher premium

attached to cash-flow risk. This leads to a rejection of the standard CAPM. However, they

argue, a model which separates out the betas with discount-rate and cash-flow shocks is

not rejected for the 25 FF size and book-to-market sorted portfolios.

In Subsection 5.1, we showed that with our 45 portfolios sorted on size, book-to-market,

and ex-ante market-beta, we were able to reject the CAPM over this sample period. We

begin our empirical tests here by examining the ability of the Campbell and Vuolteenaho
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(2004) model to explain the cross-section of returns in the pre-1963 period, using the same

set of portfolios.

The results from these tests of the Campbell and Vuolteenaho (2004) model over this

period are reported in Table 6.13 It is the numbers in the upper panel that are most

relevant here. First, notice that there is indeed a large correlation between book-to-

market and the cash-flow beta over this period: high BM firms do, on average, have

higher cash-flow betas. However, sorting on pre-formation market beta also produces

a large spread in cash-flow betas (note the t-statistics in the last column of the table),

and as we have already seen in Table 4, produces no statistically significant spread in

returns. Thus, differences in βCF that are unrelated to differences in BM are not priced,

contradicting the premise of the model.

To examine the model in the post-1963 period, we perform sorts on the basis of ex-ante

estimates of firm’s loadings on the cash-flow betas. We perform the sorts in this way

because, in the post-1963 period, sorting on pre-formation market beta produces a large

spread in the discount rate beta in the later part of the sample, but no statistically

significant differences in cash-flow betas.

To estimate cashflow-betas, we first form a time series of estimates of cashflow-innovations.

We sort on a linear combination of the variables that Campbell and Vuolteenaho (2004)

use in their vector autoregression to estimate cash-flow news. Specifically, as shown in

equation (4), their VAR estimates of NCF are equivalent to a linear combination of the

RHS variables of their VAR. We therefore calculate our pre-formation estimates of βCF by

regressing individual firm excess returns on NCF,t in the 60 months leading up to December

of year t (consistent with our method as described in Section 5.1). Other details of the

portfolio formation procedure are as described in Section 5.1.

Table 7 presents the post-1963 post-formation CF and DR betas and the associated t-

statistics. Consistent with the Campbell and Vuolteenaho (2004) results, we find that a

13The data on the innovations NCF and NDR used in the empirical tests in this section are courtesy
of Tuomo Vuolteenaho.
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higher BM ratio is generally associated with a higher β̂CF , but with a lower b̂etaDR. Also,

there is variation in both b̂etaDR and β̂DR (in the same direction) associated with average

firm size.

Table 7 presents the post-1963 post-formation CF and DR betas and the associated t-

statistics. Here, the spread is smaller than what is achieved in the early period sort on

CAPM beta, but it is still statistically significant. Moreover, the CF beta spread in the

5−1 portfolio is about as large as the spread in CF beta achieved via unconditional sorts

on book-to-market: the lower right corner of the upper panel shows a spread of 0.068,

with a t-statistic of 3.54.

However, while the sort produces a statistically significant difference in post-formation

cash-flow betas, it produces no statistically significant difference in average returns. Table

8 reports the average returns of the 45 late-period portfolios. The mean return of the

average difference portfolio is 0.09, with a t-statistic of 0.054.

5.4 Testing the Lettau and Ludvigson (2001) Model with In-

dustry Portfolios

As we noted in the introduction, researchers test their models with portfolios rather than

individual stocks to avoid an errors-in-variables problem and to lower the dimensionality

of the covariance matrix of returns. The advantage of using characteristic-sorted portfolios

is that their returns exhibit a large spread in both factor loadings and realized returns.

Of course, if a proposed factor model is correct, portfolios that generate a large spread in

factor loadings should generate a spread in realized returns.

In this section we re-examine the Conditional Consumption-CAPM (CCAPM) test of

Lettau and Ludvigson (2001). First, we reproduce their Fama MacBeth tests (in their

Table 3), but use industry-sorted portfolio returns as our test assets rather than the

characteristic-sorted portfolio returns that they use in their paper.14 The reason for

14The returns to the sets of industry portfolios are based on the portfolios documented in Fama and
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augmenting the test assets with industry portfolios is that, as we demonstrate below,

industry-sorted portfolios exhibit a relatively large spread in the loadings on the Lettau

and Ludvigson CCAPM factor ĉayt∆ct+1. Recall that what we want, in terms of aug-

menting the factor space, is a set of assets with disperse loadings on the proposed new

factors – here ĉayt∆ct+1 – which is unrelated to book-to-price. The industry portfolios

appear to meet this criterion.

Table 9, which presents the results of these sets of Fama-MacBeth regressions, indicates

that the premia on ĉayt∆ct+1 is not significantly different from zero for the industry

portfolios. Moreover while the R2 is very high for the size/BM sorted portfolios, it is low

for the FM regressions using the 38 and 48 industry portfolios. For the regression with

the 11 FF industries, the R2 is 51%, but the sign of the premium on scaled consumption

growth is reversed.

In addition, we reproduce Figure 1, Panel (d) of Lettau and Ludvigson (2001), here for

the Fama and French 38 industry sorted portfolios. The left panel of Figure 5 is done

per the their methodology, and using the 25 FF test portfolios. Consistent with Lettau

and Ludvigson’s results, we find that the conditional consumption CAPM does a good

job pricing this set of test assets.

However, the right panel of the figure plots the fitted and realized returns for the 38 Fama

and French industry portfolios. However, in constructing the fitted returns, we use the

risk premia as estimated from the Fama-MacBeth regressions with the 25 sz/bm-sorted

industry portfolios. Like the 25 Size/BM sorted portfolios, the industry sorted portfolios

exhibit considerable variation in their loadings on the factors, and consequently very

different fitted returns. However, the premia as estimated from the original test assets

are not consistent with the pricing of the industry portfolios.

This empirical analysis suggests that the covariation with the proposed factors outside of

the original Fama/French-25 portfolio return space is not priced is a manner consistent

French (1997), and are taken from Ken French’s web page. Details on the SIC codes associated with
each of the industry breakdowns is available there. The factor data – ĉayt, ∆ct+1, and ĉayt ·∆ct+1 – are
courtesy of Martin Lettau, and are the returns examined in Lettau and Ludvigson (2001).
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Figure 5: Lettau and Ludvigson (2001) Conditional CCAPM Model – Realized
and Fitted Returns with Alternative Test Assets.

This figure presents the fitted and realized returns for (1) the 25 size-book-to-market
sorted portfolios of Fama and French (1993) in the left panel, and (2) the 38 industry
portfolios from Fama and French (1997) in the right panel. As in Lettau and Ludvigson
(2001), the fitted returns are generated from Fama and MacBeth (1973) estimates.
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with the estimates for the original test assets.

6 Conclusions

A large recent literature has attemped to explain the size and value effects with extenstions

of the standard CAPM or consumption CAPM. These model can be categorized as either:

(1) conditional versions of the CAPM; (2) conditional versions of the consumption CAPM,

or (3) alternative factor models. These models are then tested with size and book-to-

market sorted portfolios. These tests tend to support the proposed models, in the sense

that the tests fail to reject the null hypothesis that the return data are consistent with the

model. These findings, however, are somewhat disconcerting since, as we show in Section
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3, the proposed factors have very low pairwise correlations and generate very different

estimates of expected returns of individual assets.

As we argue, the tests do not fail to reject the models because the models are all correct –

given the low correlations of the proposed factors they cannot all be correct – but rather

because the tests have very little power to reject. More specifically, using logic similar to

the arguments in Daniel and Titman (1997), we argue that for the tests to have power,

test assets are required that have loadings on the proposed factors that are not highly

correlated with the test asset characteristics (size and book-to-market ratios).

To illustrate this point we examine two specific models; the model developed in Campbell

and Vuolteenaho (2004) and the model Lettau and Ludvigson (2001). As we show the

empirical tests presented in these papers look very different when the test portfolios are

formed either on the basis of predicted factor loadings or industry affiliation.

We tend to agree with Lewellen, Nagel, and Shanken (2010), who argue that these models

should ultimately be tested on individual stock returns rather than portfolios. Of course,

existing tests examine portfolios rather than individual stocks because of the numerous

challenges associated with examining a sample of several thousand stocks over a sample

period of several hundred months. In our future research we hope to address this challenge.
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Appendix A. Conditional Models and Conditional Tests

This appendix reviews results on conditional and unconditional models and tests of mod-
els.

A.1. Conditional and Unconditional Factor Models

In the absence of arbitrage, all assets are priced by a pricing kernel m̃ such that:

Et[m̃t+1R̃t+1] = 1.

An unconditional k-factor model specifies that the pricing kernel is a linear function of a
set of factors:

m̃t+1 = a+ b f̃t+1 (5)

where a and b are time-invariant. In contrast, a conditional k-factor model specifies that:

m̃t+1 = at + b′t f̃t+1

Here, in contrast to the specification in equation (5), at and bt are not time invariant,
but are adapted to the time t information set.

To test a conditional factor model, we generally specify that at and bt are linear functions
of a (m×1) vector of instruments Zt ∈ Ft:

at = a′ Zt

bt = bZt

where a is (m×1) and b is (k×m). This gives:

m̃t+1 = a′Zt + (bZt)
′ f̃t+1

A.1..1 Interpreting Conditional Factor Models

As noted by Cochrane (2000), a conditional k-factor model with m conditioning variables
is equivalent to a unconditional factor model with (k ·m) factors.

For example, the unconditional CAPM specifies that:

m̃t+1 = a+ br̃m,t+1,

where a and b are time invariant. The Lettau and Ludvigson (2001) conditional CAPM
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specifies that
m̃t+1 = (γ0 + γ1zt) + (η0 + η1zt)r̃m,t+1 (6)

where, in their quarterly tests, the instrument zt is their cay variable measured at the
start of the quarter. Notice that this model has the implication that, for a (N×1) vector
of asset returns from t to t+ 1, and given an observable risk-free rate:

(r̃t+1 − 1rf,t+1) = βm(r̃m,t+1 − rf,t+1) + βmz(r̃m,t+1 − rf,t+1)zt + ε̃t (7)

where r̃, 1, βm, βmz, and ε̃t and (N×1) vectors, and rf,t+1 is the return on an efficient
portfolio uncorrelated with the market portfolio return – it is the risk-free rate if it exists,
or the (stochastic) return on a minimum-variance zero-beta portfolio.

Either equation (6) or equation (7) shows that this conditional CAPM is equivalent to a
two factors model with factors equal to:

1. The excess market return, defined as the profit that results from investing $1 in the
market portfolio and shorting $1 of the risk-free (or zero-beta) asset.

2. The scaled excess-market return, defined as the profit that results from investing $zt
in the market portfolio and shorting $zt of the risk-free (or zero-beta) asset.

A.2. Conditional Tests of Factor Models

Any test of a factor model will be a test of the set of moment restrictions:

Et[m̃t+1R̃t+1] = 1. (8)

An unconditional test examines the moment restriction that results from taking an un-
conditional expectation of equation (5):

E[m̃t+1R̃t+1] = 1.

A conditional test examines additional restrictions implied by equation (8), specifically,
that for any set of instruments Zt in Ft:

E
[(
m̃t+1R̃t+1 − 1

)
⊗ Zt

]
= 0 (9)

The set of papers that we consider here perform unconditional tests of conditional factor
models. These papers generally do not test the additional moment restrictions implied
by (9). In the language of Cochrane (2000), they don’t augment the return space with
scaled test assets – but they do augment the set of factors with scaled factors.
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Table 1: Proposed Factor Models

This table lists a subset of the factor models examined in the finance literature, and the factors and

conditioning variables considered in these tests.

Paper Factor(s) Cond. Vars.

Conditional (C)CAPM Models
Ferson and Harvey (1999) VW S&P 500 Dividend

Yield2

Lettau and Ludvigson (2001) VW or Cons Growth cay
Santos and Veronesi (2005) VW + Labor Income

Growth
Labor Income to Cons
Ratio (s)

Petkova and Zhang (2005) VW Index E[Rm] based on BC
Vars

Alternative-Factor Models
Fama and French (1993) VW, HML, SMB
Jagannathan and Wang (1996) Labor Income Growth DEF
Heaton and Lucas (2000) Proprietary Income

Growth
Piazzesi, Schneider, and Tuzel (2007) Cons Growth +∆ NH

Expenditure Ratio
(∆log(α))

Non-Housing Expen-
diture Ratio (α)

Lustig and Van Nieuwerburgh (2005) Scaled Rental Price
Change (A∆logρ)

Housing Collateral
Ratio

Aı̈t-Sahalia, Parker, and Yogo (2004) Luxury Good Con-
sumption

Li, Vassalou, and Xing (2002) Sector Inv. Growth
Rates

Parker and Julliard (2005) Innovations in Future
Long Horizon Con-
sumption Growth

Campbell and Vuolteenaho (2004) CF and DR news
Petkova (2006) Innovations in DIV,

DEF, TERM, and T-
Bill
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Table 2: Correlations of Candidate Factors
This table presents the sample correlation matrix of a subset of the factors that have been
proposed in the literature as explanations for the value premium. Each of the conditioning
variables (DP , ĉay and s) is demeaned. The sample correlations are each estimated using
quarterly data over the period 1963Q4:1998Q3.

HML DP·rm ĉay·rm s·rm ĉay·∆c ∆y ∆(prop) ∆ log(α) −NCF

HML 1 -0.10 0.07 -0.05 0.06 0.01 0.07 0.11 0.27
DP·rm -0.10 1 0.61 0.37 0.14 -0.01 0.04 0.00 -0.09
ĉay·rm 0.07 0.61 1 0.03 0.12 -0.03 -0.16 -0.00 -0.12
s·rm -0.05 0.37 0.03 1 0.07 0.03 0.14 -0.07 0.07
ĉay·∆c 0.06 0.14 0.12 0.07 1 0.13 0.10 -0.07 0.06
∆y 0.01 -0.01 -0.03 0.03 0.13 1 0.25 0.15 -0.10
∆(prop) 0.07 0.04 -0.16 0.14 0.10 0.25 1 0.28 0.11
∆ log(α) 0.11 0.00 -0.00 -0.07 -0.07 0.15 0.28 1 0.09
−NCF 0.27 -0.09 -0.12 0.07 0.06 -0.10 0.11 0.09 1

Table 3: Simulation Test Results Summary
The first two rows of this table present the results of OLS regressions of E[ri] = λ0+λ1βi+
ui for the simulated data, sorted into 10 portfolios according to BM (first row), and factor
β (second row). The third row of the table shows the results of the OLS regression test
for the 100 portfolios sorted first into deciles based on BM, and then into sub-portfolios
based on on factor β. Here the regression is:

E[ri] = λ0 + λ1βi + γ2I(2) + · · ·+ γ10I(10) + ui

where I(2) is an indicator variables which is 1 if the firm is in BM decile 2, and zero
otherwise.

λ̂0 λ̂1 R2(%)

BM Sort 0.1006 0.0946 94.4%
(11.6) (39.8)

β Sort 0.1010 0.0097 97.4%
(187.0) (17.4)

Multiple 0.0463 0.0005 99.8%
Sort∗ (92.5) (3.1)

∗The coefficients and t-statistics associated with the 9 indicator variables are not shown for this regression.
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Table 4: BM/Size/Pre-βMkt Portfolios - r̄s and Post-Formation βs

For the 1933:07-1963:06 period, this table presents the average monthly returns (in %/month) and

the post-formation market βs and the corresponding t-statistics for portfolios formed on the basis of

independent sorts into 3 portfolios each based on size and book-to-market ratio, followed by dependent

sorts into 5 sub-portfolios based on pre-formation betas. Size and book-to-market sorts are based on

NYSE cutoffs. The final column of the table, labeled 5−1, gives the average return and β for the

zero-investment portfolio formed by buying $1 of the high β portfolio, and selling $1 of the low β

sub-portfolio. The final row of the table, labeled “avg port.,” gives the statistics for the equal-weighted

portfolio of the 9 sub-portfolios listed directly above.

Chr Pt r̄ (%/mo) t(r̄) r̄ t(r̄)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 1.22 1.18 1.19 0.85 0.81 (3.48) (2.54) (2.57) (1.47) (1.39) -0.40 (-0.96)
1 2 1.40 1.28 1.41 1.17 1.24 (4.40) (3.42) (3.38) (2.32) (2.41) -0.16 (-0.51)
1 3 1.33 1.47 1.68 1.56 1.44 (3.91) (3.36) (3.26) (3.19) (2.36) 0.11 (0.30)
2 1 1.02 0.98 1.07 0.98 0.94 (4.40) (3.45) (3.03) (2.56) (2.18) -0.08 (-0.28)
2 2 1.23 1.20 1.28 1.37 1.18 (5.09) (4.03) (3.71) (3.56) (2.57) -0.05 (-0.18)
2 3 1.09 1.30 1.32 1.34 1.28 (3.53) (3.21) (3.11) (2.75) (2.39) 0.19 (0.54)
3 1 0.70 0.86 0.86 1.07 0.96 (3.46) (3.75) (3.16) (3.50) (2.77) 0.26 (1.19)
3 2 0.93 1.07 1.27 1.06 0.99 (4.37) (4.02) (3.99) (3.14) (2.47) 0.06 (0.20)
3 3 0.99 1.11 1.24 1.31 1.26 (3.14) (2.94) (2.87) (2.92) (2.48) 0.27 (0.88)

avg prt 1.10 1.16 1.26 1.19 1.12 (4.42) (3.68) (3.48) (2.93) (2.48) 0.02 (0.09)

Chr Prt β̂Mkt t(β̂Mkt) β̂Mkt t(β̂M )
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 1.03 1.40 1.30 1.71 1.76 (22.09) (23.13) (19.99) (22.09) (22.96) 0.73 (9.50)
1 2 1.06 1.24 1.40 1.66 1.70 (31.88) (30.99) (33.38) (30.01) (30.81) 0.64 (11.94)
1 3 1.07 1.40 1.66 1.61 1.88 (25.87) (27.62) (28.25) (30.35) (25.03) 0.82 (14.15)
2 1 0.78 0.99 1.25 1.36 1.53 (32.85) (39.48) (42.87) (42.84) (41.48) 0.75 (17.82)
2 2 0.82 1.05 1.24 1.40 1.63 (34.11) (42.33) (47.79) (50.05) (43.75) 0.81 (20.53)
2 3 0.99 1.39 1.47 1.63 1.80 (27.17) (36.04) (36.88) (32.82) (32.45) 0.81 (14.11)
3 1 0.70 0.82 0.99 1.13 1.29 (36.81) (48.07) (53.82) (58.54) (59.26) 0.58 (18.06)
3 2 0.70 0.89 1.11 1.21 1.40 (30.50) (32.76) (40.13) (45.52) (40.22) 0.70 (14.70)
3 3 1.04 1.27 1.44 1.56 1.71 (31.20) (32.06) (31.45) (37.86) (33.24) 0.66 (12.75)

avg prt 0.91 1.16 1.32 1.47 1.63 (53.20) (56.75) (53.61) (50.75) (47.68) 0.72 (23.80)
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Table 5: Early Period Times Series Regression Intercepts
This table presents the results of the time-series regressions of the realized excess returns and t-statistics
of the 45 portfolios on the realized excess returns of the CRSP value-weighted portfolio returns over the
1933:07-1963:06 period. The left part of the table reports the estimated regression intercepts, and the
right part presents the t-statistics associated with these intercepts. The last row of the table gives the
intercepts and t-statistics for the average portfolio, and the last two columns give the estimated intercepts
and t-stats for the 5−1 difference portfolio, as described in the text.

Chr Prt α̂ t(α̂) α̂ t(α̂)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.24 -0.15 -0.05 -0.78 -0.86 (1.01) (-0.50) (-0.17) (-2.02) (-2.26) -1.10 (-2.88)
1 2 0.39 0.10 0.07 -0.41 -0.38 (2.34) (0.50) (0.33) (-1.49) (-1.39) -0.77 (-2.87)
1 3 0.32 0.13 0.10 0.02 -0.36 (1.54) (0.53) (0.33) (0.09) (-0.96) -0.67 (-2.34)
2 1 0.28 0.03 -0.13 -0.31 -0.51 (2.34) (0.27) (-0.87) (-2.00) (-2.80) -0.79 (-3.79)
2 2 0.45 0.19 0.09 0.04 -0.38 (3.75) (1.57) (0.73) (0.27) (-2.04) -0.83 (-4.20)
2 3 0.15 -0.03 -0.08 -0.22 -0.43 (0.85) (-0.14) (-0.39) (-0.89) (-1.57) -0.59 (-2.05)
3 1 0.03 0.07 -0.09 -0.01 -0.26 (0.36) (0.81) (-0.96) (-0.08) (-2.43) -0.30 (-1.84)
3 2 0.26 0.22 0.20 -0.09 -0.35 (2.27) (1.61) (1.48) (-0.71) (-2.03) -0.61 (-2.57)
3 3 -0.01 -0.09 -0.13 -0.18 -0.37 (-0.05) (-0.48) (-0.58) (-0.86) (-1.46) -0.36 (-1.40)

avg prt 0.23 0.05 -0.00 -0.22 -0.43 (2.75) (0.52) (-0.01) (-1.49) (-2.55) -0.67 (-4.42)
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Table 6: Early Period Post-Formation CF and DR betas

This table presents the estimated CF and DR betas from time-series regressions of the
realized excess returns and t-statistics of the 45 portfolios on the component of the market
return attributable to cash-flow and discount-rate news, as calculated by Campbell and
Vuolteenaho (2004), over the 1933:07-1963:06 period. The left parts of the two panels
report CF and DR betas, and the right parts of each panel present the t-statistics asso-
ciated with these betas. The last row of the table gives the betas and t-statistics for the
average portfolio, and the last two columns give the estimated betas and t-stats for the
5−1 difference portfolio, as described in the text.

Chr Prt β̂CF t(β̂CF ) β̂CF t(β̂CF )
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.20 0.26 0.26 0.38 0.45 (4.98) (4.97) (4.91) (5.95) (7.03) 0.26 (5.44)
1 2 0.22 0.28 0.29 0.36 0.42 (6.15) (6.82) (6.34) (6.42) (7.57) 0.21 (5.94)
1 3 0.31 0.35 0.42 0.41 0.47 (8.49) (7.39) (7.54) (7.75) (7.07) 0.16 (4.05)
2 1 0.13 0.18 0.24 0.26 0.27 (4.94) (5.56) (6.01) (6.15) (5.49) 0.14 (4.27)
2 2 0.18 0.24 0.25 0.30 0.34 (6.81) (7.47) (6.70) (7.11) (6.67) 0.16 (4.84)
2 3 0.28 0.37 0.39 0.43 0.45 (8.45) (8.53) (8.68) (8.24) (7.75) 0.17 (4.27)
3 1 0.09 0.13 0.16 0.16 0.24 (3.73) (4.97) (5.34) (4.75) (6.16) 0.15 (6.24)
3 2 0.13 0.21 0.21 0.25 0.29 (5.34) (7.26) (5.99) (6.70) (6.45) 0.16 (4.70)
3 3 0.22 0.31 0.32 0.34 0.42 (6.28) (7.67) (6.75) (6.96) (7.66) 0.20 (5.88)

avg prt 0.19 0.26 0.28 0.32 0.37 (7.13) (7.57) (7.19) (7.29) (7.56) 0.18 (6.77)

Chr Prt β̂DR t(β̂DR) β̂DR t(β̂DR)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.84 0.99 1.02 1.13 1.27 (11.91) (10.07) (10.57) (9.04) (10.37) 0.43 (4.46)
1 2 0.77 0.91 1.02 1.11 1.19 (12.08) (12.09) (12.31) (10.57) (11.36) 0.42 (6.02)
1 3 0.82 1 1.08 1.15 1.24 (11.91) (11.06) (9.91) (11.48) (9.55) 0.42 (5.18)
2 1 0.63 0.72 0.91 0.96 1.02 (14.19) (12.86) (13.15) (12.65) (11.55) 0.39 (6.09)
2 2 0.62 0.75 0.89 0.97 1.13 (13.04) (12.77) (13.14) (12.69) (12.35) 0.51 (8.22)
2 3 0.68 0.86 0.93 1.04 1.17 (10.60) (10.06) (10.51) (10.17) (10.43) 0.48 (6.11)
3 1 0.54 0.61 0.69 0.82 0.90 (13.87) (13.81) (13.05) (13.93) (13.21) 0.36 (7.35)
3 2 0.49 0.52 0.75 0.79 0.91 (11.38) (9.04) (11.56) (11.40) (11.05) 0.42 (6.21)
3 3 0.65 0.86 0.91 1.01 1.08 (9.73) (11.08) (9.96) (10.90) (10.15) 0.43 (6.20)

avg prt 0.67 0.80 0.91 1.00 1.10 (14.12) (12.87) (12.78) (12.29) (12.11) 0.43 (8.25)
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Table 7: Late Period Post-Formation CF and DR betas

This table presents the estimated CF and DR betas from time-series regressions of the
realized excess returns and t-statistics of the 45 portfolios on the component of the market
return attributable to cash-flow and discount-rate news, as calculated by Campbell and
Vuolteenaho (2004), over the 1963:07-2001:12 period. The left parts of the two panels
report CF and DR betas, and the right parts of each panel present the t-statistics asso-
ciated with these betas. The last row of the table gives the betas and t-statistics for the
average portfolio, and the last two columns give the estimated betas and t-stats for the
5−1 difference portfolio, as described in the text.

Chr Prt β̂CF t(β̂CF ) β̂CF t(β̂CF )
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.090 0.110 0.119 0.136 0.157 (2.62) (3.04) (3.04) (3.08) (3.25) 0.067 (2.54)
1 2 0.117 0.127 0.134 0.153 0.181 (4.55) (4.46) (4.16) (4.20) (4.22) 0.064 (2.63)
1 3 0.133 0.153 0.170 0.160 0.211 (4.89) (5.25) (5.24) (4.47) (5.12) 0.078 (3.63)
2 1 0.077 0.074 0.091 0.099 0.130 (2.82) (2.39) (2.72) (2.74) (2.86) 0.053 (1.93)
2 2 0.106 0.110 0.135 0.158 0.157 (4.71) (4.14) (4.94) (5.19) (4.23) 0.051 (2.10)
2 3 0.115 0.134 0.141 0.173 0.214 (4.83) (4.99) (4.71) (5.41) (5.49) 0.098 (3.54)
3 1 0.061 0.058 0.068 0.074 0.091 (2.49) (2.27) (2.42) (2.41) (2.50) 0.031 (1.27)
3 2 0.052 0.075 0.100 0.118 0.146 (2.28) (3.04) (3.74) (4.15) (4.39) 0.094 (3.70)
3 3 0.084 0.099 0.127 0.123 0.161 (3.50) (4.00) (4.48) (3.95) (4.67) 0.077 (2.90)

avg prt 0.093 0.104 0.121 0.133 0.161 (4.15) (4.18) (4.32) (4.32) (4.40) 0.068 (3.54)

Chr Prt β̂DR t(β̂DR) β̂DR t(β̂DR)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 1.188 1.267 1.386 1.542 1.658 (17.05) (17.46) (17.77) (17.32) (16.82) 0.470 (7.28)
1 2 0.859 0.962 1.117 1.237 1.466 (15.90) (16.07) (16.92) (16.37) (16.55) 0.607 (10.79)
1 3 0.852 0.929 1.037 1.188 1.356 (14.22) (14.56) (14.61) (15.71) (15.32) 0.504 (9.93)
2 1 0.927 1.108 1.221 1.324 1.642 (16.71) (18.46) (18.78) (18.85) (18.47) 0.715 (11.33)
2 2 0.669 0.903 0.948 1.030 1.302 (13.35) (16.44) (16.63) (15.91) (17.34) 0.632 (11.49)
2 3 0.608 0.786 0.952 1.006 1.217 (10.80) (12.89) (14.65) (14.28) (14.11) 0.609 (9.11)
3 1 0.780 0.877 1.020 1.132 1.304 (15.21) (17.21) (18.72) (19.45) (18.25) 0.524 (9.16)
3 2 0.551 0.697 0.870 0.878 1.128 (10.41) (12.69) (15.27) (14.07) (16.35) 0.577 (9.52)
3 3 0.500 0.583 0.759 0.947 1.059 (8.58) (9.97) (11.56) (13.81) (13.93) 0.560 (8.71)

avg prt 0.770 0.901 1.034 1.143 1.348 (16.80) (18.15) (18.90) (19.05) (18.79) 0.577 (13.67)
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Table 8: Late Period Average Portfolio Returns

For the 1963:07-2001:12 period, this table presents the average monthly returns (in %/month) and the

corresponding t-statistics for portfolios formed on the basis of independent sorts into 3 portfolios each

based on size and book-to-market ratio, followed by dependent sorts into 5 sub-portfolios based on

pre-formation cash-flow betas. Size and book-to-market sorts are based on NYSE cutoffs. The final

column of the table, labeled 5−1, gives the average return for the zero-investment portfolio formed by

buying $1 of the high β portfolio, and selling $1 of the low β sub-portfolio. The final row of the table,

labeled “avg port.,” gives the average return and t-statistic for the equal-weighted portfolio of the 9

sub-portfolios listed directly above.

Chr Prt r̄ (%/mo) t(r̄) r̄ t(r̄)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.53 0.57 0.77 0.53 0.24 (1.81) (1.87) (2.30) (1.40) (0.59) -0.29 (-1.28)
1 2 0.71 0.85 0.88 0.76 0.95 (3.23) (3.45) (3.18) (2.44) (2.57) 0.23 (1.12)
1 3 1.04 0.95 1.07 1.02 1.11 (4.40) (3.75) (3.78) (3.31) (3.10) 0.07 (0.39)
2 1 0.66 0.64 0.55 0.42 0.49 (2.87) (2.45) (1.92) (1.37) (1.27) -0.17 (-0.74)
2 2 0.63 0.62 0.80 0.66 0.93 (3.26) (2.71) (3.39) (2.49) (2.92) 0.29 (1.44)
2 3 0.67 0.90 1.02 0.95 1.02 (3.25) (3.88) (3.97) (3.43) (3.02) 0.35 (1.48)
3 1 0.57 0.55 0.54 0.48 0.52 (2.75) (2.54) (2.27) (1.87) (1.67) -0.05 (-0.25)
3 2 0.51 0.61 0.48 0.57 0.77 (2.67) (2.94) (2.10) (2.32) (2.69) 0.25 (1.17)
3 3 0.67 0.57 0.73 0.75 0.79 (3.29) (2.70) (3.00) (2.80) (2.65) 0.11 (0.50)

avg prt 0.67 0.70 0.76 0.68 0.76 (6.26) (5.73) (5.38) (4.60) (4.10) 0.09 (0.54)
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Table 9: Tests of the Lettau and Ludvigson (2001) Consumption CAPM Using
Size/BM sorted and Industry Portfolios
This table presents estimates of the coefficients, t-statistics (in parentheses) and R2s from
a second stage Fama and MacBeth (1973) regression. The data is monthly, and covers
the sample period 1963:10 - 1998:09. The factors ĉayt, ∆ct+1, and ĉayt ·∆ct+1 are those
used in the corresponding regressions in Lettau and Ludvigson (2001). The test assets
are (1) the 25 size-book-to-market sorted portfolios of Fama and French (1993), and (2)
the industry portfolios from Fama and French (1997). All of the portfolio return data was
obtained from Kenneth French’s web site.

Ports Const ĉayt ∆ct+1 ĉayt ·∆ct+1 R2

25 FF SZ/BM 4.28 -0.12 0.02 0.0057 0.70
(11.36) (-0.66) (0.23) (3.10)

48 FF Indust. 2.94 0.27 -0.10 0.0002 0.30
(14.49) (2.99) (-2.26) (0.24)

38 FF Indust. 3.13 0.18 -0.07 0.0003 0.09
(8.40) (0.93) (-0.92) (0.17)

11 FF Indust. 2.91 -0.02 0.03 -0.0033 0.51
(7.08) (-0.09) (0.29) (-1.84)
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